
Code Generation for Embedded Systems

Peter Sestoft Henrik Hulgaard Andrzej Wąsowski

IT-C, 3-4 June 2002

keywords: statecharts, UML, code generation, code synthesis, embedded systems, interpreters.

Background

Over the last decade IT technology has entered the market of industrial and home ap-
pliances. The number of specialized micro-processors embedded in devices already
far exceeds the number of CPUs in personal computers. Their overwhelming suc-
cess motivates the development of methodologies and tools supporting definition and
implementation of control algorithms for embedded systems.

Development of embedded software faces somewhat different problems than standard
PC programming, where memory is practically unlimited (for most applications) and
computation speed is fast and ever increasing. Standard workstation compilers op-
timize for speed and are implemented to get short compilation times. Despite the
success of multi-threaded operating systems, most of the program logic is still inher-
ently sequential.

In contrast, embedded systems are highly concurrent and time constrained. The size
of memory (both read-only ROM and writable RAM) is limited. Both memory size
and CPU speed strongly influence power consumption and cost, and should be mini-
mized.

Usage of textual languages (C/C++/assembly languages) still plays the primary role
in development of embedded software. In this traditional context, design of con-
trol algorithms resembles development of standard PC software. Nevertheless, the
specification of control algorithms in C-like languages with very limited support for
concurrency is inconvenient and leads to cumbersome and bug-prone designs. More-
over, a significant amount of information about the system’s concurrency structure is
lost during design, and is not available at compile-time.

1



Figure 1: Sample statechart model.

Project Description

Visual design languages (Mealy machines, Statecharts, Petri nets) present attractive
alternatives for the design of complex control algorithms. Statecharts (Fig. 1) are the
most popular visual language among those, mainly because of their incorporation in
the UML family of diagrams. Statecharts provide a readable and convenient way to
visualize control algorithms of hierarchically structured concurrent reactive systems.
The use of hierarchy increases readability and avoids size explosion.

In this project we consider automatic program synthesis for micro-controller driven
systems. The source language are statecharts as used in the VisualSTATE tool (IAR
Inc.) and UML state diagrams. The main focus is on the specific needs of embedded
software.

The information provided by a hierarchical concurrent model gives more opportunity
for an optimizing compiler than a C program with occasional calls to a branching
function. Consequently a Statechart compiler has an advantage over a traditional
C compiler, so it should be possible to generate fast but compact code. Additional
parameters (power consumption, meeting time constraints, etc) as well as various
optimization trade-offs may be taken into account as well.

2



Problems and Related Theory

The extensive theory of translation is our primary source. Traditionally, code synthe-
sis from statecharts has been based on interpretative techniques: a runtime represen-
tation of the model is generated, which is then executed by an interpreter.

Part of our work concerns data structures for internal representation of models. Pre-
serving high-level information in the data structure should help improve code com-
pactness and speed. The code generator currently used by VisualSTATE discards hi-
erarchy information by flattening the model, sometimes causing a state explosion. We
attempt to preserve high-level information by using tree-like model representations.
Our current interpreter executes such hierarchical models directly.

A model representation has static and dynamic parts, reflecting features of the model
and the kinds of memory available. Memory is a scarce resource, but the read-write
(RAM) part is even more limited than the read-only part (ROM). Thus the dynamic
features of the model (global state, history) should be represented in a highly compact
manner. When dynamic memory is not a scarce resource, it is interesting to control
the trade-off between static and dynamic memory sections.

The current VisualSTATE implementation uses the same interpreter for all models.
Instead, one could generate a specialized interpreter for each model. The degree of
specialization may range from nothing (plain interpretation) to full partial evaluation
(a hard-coded statechart model). We aim to experiment with the boundary between
interpretation and compilation to control the size/speed trade-off.

Various state space analyses of the model, possibly based on model-checking, may
provide significant information, which could be used to generate better code.

Current Advances and Expected Results

An extensive study of statechart languages has been made, and a formal semantics
for VisualSTATE statecharts has been proposed. A toolkit for the language has been
developed, which currently includes several minor tools and a highly abstract experi-
mental model interpreter. It will soon be equipped with a code generator.

The work should result in a comprehensive analysis of synthesis techniques for state-
charts, including new contributions. The form should be suitable for direct transfer to
companies implementing visual tools.

We will also develop an open source code generator for VisualSTATE statecharts,
covering other statechart variants as well, to understand their pros and cons.

3



Wider Perspective

Within the IT-C this work belongs to the project Resource Constrained Embedded
Systems (RCES). In a wider context it fits into a chain of research efforts on providing
a complete and reliable methodology for developing software:

� design of usable modeling languages;

� defining the formal semantics of design languages;

� model-checking and verification;

� code synthesis from models;

� automatic testing and test case generation.

Related Work

In the early eighties Berry (INRIA) proposed Esterel, a synchronous textual language
for concurrent software, having many similarities with statecharts. Intensive research
has been done on Esterel compilation.

In 1987 Harel (Weizmann Institute) introduced statecharts, then implemented in the
Statemate tool (I-Logix). The work was mainly focused on semantics of statecharts
(Harel and Pnueli) and hardware synthesis resulting in a PhD thesis by Drusinsky
(1988).

More recently, attempts have been made to translate UML state diagrams to imper-
ative and formal languages (Sekerinski at McMaster, Lilius and Paltor at Turku). In
none of the cases the focus was on embedded systems with constrained resources.

IAR Inc. cooperates with verification researchers on improving code synthesis in Vi-
sualSTATE (Kristoffersen at the IT-C, Behrmann at Aalborg). A synthesis scheme
has been developed that preserves hierarchical structure; it is being implemented by
VisualSTATE.

The IMAGES project (Rajkumar and Clarke at Carnegie Mellon) develops a complete
framework for embedded software. One of the objectives is to use verification results
(in form of annotations) to improve code synthesis.

4


