
Compile-time Scope Resolution

for Statecharts Transitions ?

Andrzej Wąsowski and Peter Sestoft

IT University of Copenhagen
{wasowski,sestoft}@it-c.dk

Abstract. Despite the success of statecharts, surprisingly little research
effort has been devoted to improving code synthesis techniques for them.
The work presented below is an outcome of growing interest in the
area. We discuss one possible improvement for code generators retain-
ing explicit information about the model hierarchy. The problem of dy-
namic scope for multitarget transitions is described and an algorithm for
compile-time detection and resolution is presented. Finally we examine
the possibilities of employing this technology in various compilation opti-
mization for classical UML state diagrams which do not allow multitarget
transitions.

1 Introduction

UML languages are receiving increasing interest in the embedded systems com-
munity. Especially statecharts[8, 14] enjoy a constantly growing number of pub-
licly available implementations supporting design, verification and code syn-
thesis. Increased reliability of the final product encourages use of high level
description techniques. Unfortunately at the same time runtime overheads in
synthesized code discourage applications with hard time requirements and space
constraints. Relatively inefficient code generation techniques are probably the
main reason why the vast part of embedded devices are still programmed with
low level tools and languages (assembly languages, C, mutations of C++, etc).
Available code synthesizers targeting embedded systems focus on fully au-

tomatic synthesis of efficient and compact code [15, 10, 5, 11]. This contrasts
with traditional approach of CASE tools for standard PC software, which em-
phasize readability and ability to manually modify the final result. Automatic
nonmodifiable code generation gives much better results in terms of efficiency
and size.
IAR visualstate [11] is a CASE development system including a state-

chart implementation following the unified notation of UML. IAR visualstate is
specifically devoted to development of embedded software. Its state diagrams are
compiled to a set of compact runtime structures representing the model, which
are then interpreted by a simple runtime driver (mostly model independent).
From both safety and efficiency perspective, it is desirable that the logics of the

? Revised 3/10/2002



B C

F G
[ f {} {} ] /

[ f {} {E} ] /

ED

[ e {F} {} ] / a : G

A

Fig. 1. Statechart with single-level transitions. A is an and-state, which is a parallel
composition of or-states B and C. State B is in turn a sequential composition of basic
and-states D and E.

interpreter is as simple as possible, speeding up execution process and decreasing
trusted code base.
In this paper we analyze a specific problem of code synthesis for visualstate

statecharts: dynamic scope resolution for multitarget transitions. The problem af-
fects those code generation schemes which preserve high-level information about
the model hierarchy at runtime. A straightforward solution computes the scope
of transition at runtime. This approach however would slow the execution of all
transitions down (not only multitarget transitions).
We propose an algorithm shifting the task of detection and scope resolution

from runtime to compile time, simplifying the runtime engine and improving its
efficiency. The algorithm has been implemented and evaluated in our experimen-
tal code generator.

2 Multitarget Transitions

A precise operational semantics for the visualstate language has been given in
[16]. A brief description should suffice for the purpose of current paper. State-
charts of visualstate follow the semantics of UML state diagrams in general.
See figures 1 and 2 for basic examples.
States are organized in a hierarchy by means of parallel composition of or-

states and sequential compositions of and-states. States belonging to concurrent
or-states are called orthogonal. The decomposition tree shown on figure 2 is a
convenient way to explicitly represent the hierarchy. The root of the tree is a
top level and-state. Types of internal nodes alternate between and-states and or-
states on each path from root to leaves. A childless leaf (basic state) is always an
and-state. Formally two states are orthogonal if their nearest common ancestor
is an and-state.
Each state may have some actions assigned, which are fired whenever the

state is entered (entry action) or is left (exit action).
The precise dynamic behavior of the model is specified using transitions

describing state changes. Each transition comprises two parts: a condition side
and an executable side. The condition side declares a single triggering event and

2



a guard. The guard is a boolean condition generated from the following grammar
over terms on activity and inactivity of states in current configuration:

g ::= true | g ∧ s | g ∧ ¬s , (1)

where s stands for any state name.
The executable side of a transition specifies a number of actions to be exe-

cuted when the transition is fired, and a set of target states which should become
active after the transition is taken. We use textual syntax of rules for convenient
representation of visual transition objects:

t : [e pos neg] / a : s1...sk , (2)

where t is an optional name of the transition, e is a triggering event, pos is a set
of states which have to be active, neg is a set of states demanded to be inactive
in order for the transition to be enabled, a is an action to execute, and si are
target states. Note that the source and target states of transition arrow are not
represented explicitly in this notation. If visual transition has the shape

ss −→ st ,

then the source state ss is included in the set of positive guards pos and the
target state st, indicated by arrow head, is included in general set of targets
{s1, ..., sk} of formula (2).
Standard UML transitions may be forked to several targets located in or-

thogonal components. The intended meaning is that control forks from one state
(perhaps itself concurrent) to several concurrent states. In a well formed stat-
echart targets must be mutually orthogonal and they may not be orthogonal
with any of the source states of transition. It is therefore not possible to affect
already active components concurrent to the transition itself in the same step
when transition is fired. In other words, the transition arrow can never cross
dotted region boundaries. Changes in concurrent components may be achieved
by triggering a local event e which will cause a transition to fire in demanded
concurrent region.
State diagrams of visualstate relax standard UML conditions imposed on

targets. It is allowed to enter states in components orthogonal to source state.
Figure 1, region B, provides an example.
The syntax is slightly modified in visualstate; a transition is not visually

forked anymore. Instead one target is selected as the explicit target, pointed at by
the arrow head of transition. Following textual rule notation – see formula (2)
– remaining targets are added to the executable part of transition, avoiding
peculiarity of arrows crossing boundaries between concurrent regions. Thus the
transitions of figure 1 may be written down as following textual rules:

t1 : [ e {D, F} {} ] / a : E G

t2 : [ f {F} {} ] / − : G

t3 : [ f {G} {E} ] / − : F . (3)

3



Consider transition t1. Assume that current event is e and states D, F are
active in current state configuration σ. Then t1 is enabled. The semantics of
firing t1 is to execute exit actions of D and F , remove D, F from current con-
figuration, execute action a and entry actions of E, G, finally adding E, G to
current configuration.
The interesting point is to note that a transition with several targets actually

takes place in several scopes. For the first target (E) all active descendants of B
have to be exited. The state change to state E takes place within region of B.
We call B the scope of the state change to state E in configuration σ. The scope
for the second target (G) is region C. A slightly more detailed textual notation
can be proposed for rules, making scopes explicit:

t1 : [ e {D, F} {} ] / a : [B]E [C]G

t2 : [ f {F} {} ] / − : [C]G

t3 : [ f {G} {E} ] / − : [C]F . (4)

Transitions with generalized targets as described in this section are called
multitarget transitions as opposed to the classical join and fork transitions of
UML.
The execution semantics for multitarget transitions may seem a bit com-

plicated. It should be stressed though, that in most applications multitarget
transitions are used in a very restricted and straightforward way. An average
multitarget transitions will only have two targets and is used in a manner very
similar to broadcasting of signals. Thus it can intuitively be used by developers.
There is a significant drawback of multitarget transitions. Broadcasts are def-

initely more clear notationally: signal is well visualized in both the broadcasting
component and in the receiving component. At the same time a multitarget tran-
sition will only visualize an additional target on its arrow – in the broadcasting
component. There is no notation in the affected component informing about the
externally caused state change. For this reason we do not consider multitarget
transitions as a good language extension. At the same time we argue that mul-
titarget transitions can be more efficient than broadcasts and because of that
they are suitable for use in runtime representations of statecharts.

3 Dynamic Scopes Problem

In general, it is not possible to annotate arbitrary transitions with scopes for each
target change, as in the simple example of fig.1. The scope of a state change po-
tentially depends on the current configuration. Consider the example in figure 2.
This example contains a single transition that affects both concurrent compo-
nents.
Let as assume that all statically imposed state configurations are legal for

this statechart. 1 Figure 3 shows legal state configurations in which the transition

1 This is a conservative estimation. Determining the exact set of reachable configura-
tions demands performing a full reachability test. Such estimation has to be made

4



B C

G

H I

F

G’

D

E

[ e {} {} ] / a : H

A

A

B C

GF

G’

H I

D E

Fig. 2. Statechart exhibiting the problem of dynamic scope. The hierarchical model
On the left has the decomposition tree shown on the right. Solid frame nodes represent
and-states, dash-line frame nodes represent regions (or-states). H and E are orthogonal
because they belong to concurrent regions of B and C. Their nearest common ancestor
in decomposition tree is A, which is an and-state.

is enabled. Similarly to the first example the scope of state change to state E
will always be the same, regardless of the current configuration. It has been
visualized using shaded area surrounding always the same set of descendants
{B, D, E}. This property is guaranteed by the implicit positive condition {D}
induced by the explicit source of transition. You can observe that the scope
will always be independent of current configuration for state change to explicit
target of transition (and hence for all transitions of regular UML statecharts,
which only have explicit targets).
Let us look at the second target (state H), the implicit target being forced

by this transition. If state F is active (figure 3a) then firing process would imply
exiting state F and entering appropriately G, G′ and H . The scope of the state
change would be the region of C. On the other hand if I is active (figure 3b)
the scope of state change becomes narrower: state G′. All states below G’ must
be exited and G must be entered. The same holds for the last case, where state
change behaves as a self-loop on H . Thus event states not mentioned in the
transition affect the set of entry and exit actions to be executed.
This can be very expressive if one uses the entry/exit actions in resource allo-

cation (or object construction/destruction) fashion of object oriented program-
ming. Lots of transitions can be avoided retaining relatively clear approach. At
the same time the logics of runtime interpreter becomes much more complicated.
If the scope of state change is dynamic then it has to be computed at runtime.
Unfortunately this is an expensive process. As a result a typical interpreter will
actually be slow also for majority of normal transitions with static scopes.
Various optimizations can be done to improve efficiency of this computation.

We think, however, that the most efficient solution is to precompute scopes
at compile time, transforming the model to guarantee that all transitions have

in any statechart compiler lacking extensive state space exploration. The algorithm
presented in section 5 can be easily improved using reachability tests.

5



C

GF

H

E

A

F

I

E

B

E GF

G’

H

D

A

I

G’

C

D

B

A

C

G

G’

H

D

B

I

a) b) c)

Fig. 3. Legal state configurations for the statechart in figure 2 in which the transition
is enabled. Shaded tree nodes with shaded background are active. Nodes with white
background are inactive. Shapes in dotted boundaries depict areas affected by firing the
transition in this configurations. Arrows represent actual state changes when transition
is fired in various configurations.

statically computable scopes. In such case it is possible to remove all scope
resolution support from interpreter, making it simpler, more orthogonal and
efficient for all of transitions without loss of performance in average, single target
case.
Let us give an intuition about the main idea of transition transformation.

Instead of having one transition with dynamic scope resolution for the second
target (fig.2), we can split it into several mutually exclusive rules for which static
scope resolution is possible:

[ e {D, F} {} ] / a : [B]E [C]H

[ e {D, G} {} ] / a : [B]E [G′]H . (5)

We proposed two rules instead of one and ensured that scope can be resolved
statically for each of them by extending guards with extra conditions. Following
sections discusses how to automate this task.

4 Basic Definitions

Let us start with formalizing some basic notions. Our state configurations are
defined to be maximal orthogonal sets of basic states [9, 16]. The set is orthogonal
if all its elements are mutually orthogonal. Maximality means that adding any
basic state to configuration would not preserve set orthogonality.
The visual notation distinguishes one of the positive conditions as a source

of the transition arrow. We call this state the explicit source. Similarly one of
the targets is distinguished as the explicit target. Explicit source and target
determine the explicit scope of transition – the smallest component enclosing

6



the arrow. Explicit scope plays only a minor role in operational semantics of
multitarget transitions. The main role is assigned to implicit scope, which directly
depends on the current configuration and the target:

Definition 1 (Implicit Scope). Let s denote the target state and σ the current
state configuration. The implicit scope of state change to s is defined recursively:

iscope(σ, s) =

{

parent(s) if descend(parent(s)) ∩ σ 6= ∅

iscope(σ, parent(s)) otherwise
,

where descend(s) is the set of direct and indirect descendants of state s, not
including s itself.

Implicit scope can be generalized to encompass all targets of transition:

Definition 2 (Generalized Scope). Generalized scope of transition t in state
configuration σ is a set of implicit scopes given by:

iscopes(σ, t) = {iscope(σ, s) | s ∈ targets(t)}

Definition 3 (Static Generalized Scope). Transition t is said to have static
generalized scope iff for any pair of state configurations σ1, σ2 such that transi-
tion t is enabled in both of them, and for all targets s1, ..., sk of t, it holds that
iscope(σ1, si) = iscope(σ2, si).

Clearly if the generalized scope of t is static then it can be computed at compile
time.

5 Static Scope Resolution

The generalized scope is independent of current configuration if guard conditions
are strong enough to guarantee this. In particular it suffices that guards include
a branch excluding expression over each target to ensure that the scope is static:

Definition 4 (Branch Exclusion). An expression (s1∧¬s2) is called a branch
excluding expression (or simply branch exclusion) iff s2 is a child state of s1.

Note that it is not strictly necessary for a transition to contain branch exclu-
sion in its guard in order to have static generalized scope. It is however necessary
that branch exclusion can be implied from transition guards and model struc-
ture. This is exactly the case in our examples. None of the transitions explicitly
contains a branch exclusion in its guard, but it can be trivially inferred. The
strength of branch exclusion follows from the following observation and from the
exclusion theorem.

Observation 5 (Guard Propagation). If state s is active in given state con-
figuration then all its ancestors are active. If state s is inactive then all its
descendants are inactive.

7



Theorem 6 (Exclusion). Let φ be a formula representing all statically legal
state configurations of given statechart model. Assume that state s is among the
targets of transition t. The scope of state change to s is static iff one of the
following conditions is satisfied:

1. There exist ancestors s1, s2 of s (possibly s2 = s), such that s1 is a parent
of s2 and φ ∧ guard(t) ⇒ (s1 ∧ ¬s2) or

2. φ ∧ guard(t) ⇒ s,

Moreover if the first condition is satisfied, then s1 is the corresponding static
scope. If the second condition is satisfied, the static scope is the parent of s.

Proof. (sketch for nontrivial case 1). Let us take any two legal state configura-
tions σ1, σ2 such that transition t is enabled in both. From assumption we know
the same branch exclusion is implied regardless of the choice of configuration
(and we can choose any configurations satisfying φ). From guard propagation it
follows that s1 is the active state closest to s in both configurations. By defini-
tion of implicit scope it is the scope of state change to s for both configurations.
The proof in reverse direction proceeds in a similar manner. ut

The exclusion theorem helps to detect if given transition is static. It does not
solve the general problem, what to do if the transition is dynamic. The way to
proceed is to multiply each transition, extending its guard with suitable branch
exclusions. Static resolution becomes possible and trivial for each transition dec-
orated in this way.

Let us start with constructing a formula representing the set of legal state
configurations for our state diagram. The formula will be defined over a set of
boolean variables – one for each state. Assignments to these variables identify
state configurations of the statechart. If a variable is assigned true then the
state is meant to be active in respective configuration. It is inactive otherwise.
For notational simplicity we will not distinguish between states and boolean
variables representing them, similarly as in syntax for guard conditions above.

To begin with, the formula φ will concern all state configurations not violating
the static structure of the model. To build it we conjoin following simple terms
corresponding to decomposition steps:

1. if s is an and-state and s1, ..., sk are its children then
(s ⇒ s1 ∧ ... ∧ sk) ∧ (¬s ⇒ ¬s1 ∧ ... ∧ ¬sk) is a simple term.

2. if s is an or-state and s1, ..., sk are its children then
(s ⇒ s1 xor ... xor sk) ∧ (¬s ⇒ ¬s1 ∧ ... ∧ ¬sk) is a simple term.

3. (root) is a simple term

Thus the formula for statechart of figure 2 would be:

(fig2)φ = A ∧ (A ⇒ B ∧ C) ∧ (B ⇒ D xor E) ∧ (C ⇒ F xor G) ∧

∧ (G ⇔ G′) ∧ (G′ ⇒ H xor I) ∧ (¬G′ ⇒ ¬H ∧ ¬I) . (6)

8



We proceed by restricting the formula to describe only configurations en-
abling transition t. If pos(t) = {s1, ..., sk} and neg(t) = {sk+1, ..., sl} then the
restricted formula is defined to be:

φ′(t) = φ ∧ (
∧

i=1..k

si) ∧ (
∧

i=k+1..l

¬si) (7)

In our concrete example this translates to:

(fig2)φ′(t) =(fig2) φ ∧ D (8)

Note that the set of solutions of φ′(t) is a subset of solutions of φ. Formula
φ′(t) needs to be further restricted to eliminate variables other than ancestors
of targets and the targets themselves. These states are the only candidates for
exhibiting branch exclusion property of exclusion theorem. The remaining vari-
ables are irrelevant and as such should be eliminated to get rid of unnecessary
noise in solution set. The restriction can be conveniently done by existential
quantification over all unrelated variables:

φ′′(t) = (∃ŝ1, ..., ŝm). φ′(t) , (9)

where ŝ1, ..., ŝm are all the states in the model except for targets of t and their
ancestors. This corresponds to

(fig2)φ′′(t) = (∃D, F, I). (fig2)φ′(t) (10)

in our example formula.
Due to guard propagation, the solutions of φ′′(t) have a regular shape: each

path down the hierarchy starts with some variables assigned true and switches
permanently to false at certain point. See figure 4 for solutions concerning the
model from figure 2.
A transition is trivially unreachable if satisfiable solutions for φ′′(t) do not ex-

ist. Lack of solutions proves that guard condition is contradictory and transition
may be safely discarded (perhaps issuing a warning for user).2

If there exists exactly one satisfiable solution to φ′′(t) then, following the
exclusion theorem t has static scopes and the scopes can be inferred from solution
of formula. One needs to identify the branch exclusion (the switch-point from
true to false on ancestors path) and use the exclusion theorem. Note that there
is no need to extend guard conditions in this case. Existing guard is sufficient to
guarantee desired properties of scopes.
A transition has a dynamic generalized scope if there are more assignments

satisfying φ′′(t). For each possible assignment of scopes there is a satisfiable as-
signment for variables. Each assignment may contain several branch exclusions

2 Note that much better algorithms for detecting unreachable transitions are known
within the model-checking community. See reachable state space analysis in [3, chap-
ter 6] for a basic introduction. Removal of unreachable transitions should rather be
considered as model correctness check than an optimization.

9



A

B C

E G

G’

H

A

B C

E

G’

H

A

B C

E G

G’

H

G

c)b)a)

Fig. 4. Solutions of formula (fig2)φ′′(t). Shaded nodes represent active states (true
assigned to the variable). White background nodes repersent inactive states (false as-
signment). Three solutions (a,b,c) correspond to scopes depicted in three parts of fig.
3. The same branch exclusion (B∧¬E) over state E is present in all 3 solutions. This is
because state change to E has static scope. However state H has two diffrent exclusions
(and lack of exclusion in case c), which means that the scope is dynamic. It can take
several values. In the last case (c) the scope is G′ and the state change behaves like a
self-loop (second case of exclusion theorem).

but at most one over each target. The branch exclusions may not be contradic-
tory as they come from the same solution of φ′′(t). For each satisfiable assignment
we create a new transition tj extending the guard with branch exclusions found
in the assignment. Guards simplification may be used to ensure that no redun-
dant checks are introduced. Minimality of guards for newly created transitions
is not guaranteed by the algorithm itself.

Note that this transition cloning should not be expensive. In a typical model
there will be very few (if any) transitions with dynamic scope, and only those
transitions will be multiplied. At the same time much of the interpreter logic
can be removed from runtime code.

Last but not the least it may happen that two or more targets happen to
have a common scope in a given transition. In this case the scope should only be
exited and entered once, obviously. Thus the transition targets should in general
be classified in subsets tagged with common scope. If the scope is dynamic it may
happen that actually the grouping will depend on the current configuration. This
problem is also nicely solved by the above algorithm. Once the static scope has
been inferred for each target, the targets may be grouped into proper categories.
If the transition has been multiplied it is trivially guaranteed that each of the
new transitions has a static division of targets into common scope groups. The
division can only differ between newly introduced transitions.

Finally let us note that such transition multiplication is a semantics preserv-
ing transformation of the model. The proof of this claim should use the com-
plete operational semantics of statecharts. The main observation is that new

10



transitions are active only whenever the old transition was active, their activity
is mutually exclusive and whenever the original transition was active in some
configuration there is a single new transition which is active in the same con-
figuration. All this follows from construction algorithm relying on solutions to
satisfiability problem. Targets and actions of new transitions are identical to the
original transition. Consequently if the new transitions are substituted for the
old one in the transition set then the model behavior does not change.

6 Implementation

The algorithm has been implemented as part of SCOPE – a statechart code
generator being developed at IT University of Copenhagen. In our implemen-
tation we used binary decision diagrams [6] for finding satisfiable assignments
of formula φ′′(t). BDDs are well known as good platform for solving boolean
equations, especially in model-checking community.
One disadvantage of BDDs is the possibility of space explosion while the

formula is built. This problem has not been experienced in our evaluation of the
algorithm. One of the reasons is that the problem we solve is much simpler than
typical dynamic model-checking problems (fewer variables are involved). Ad-
ditionally we propose several simple implementation improvements to decrease
space requirements.
The most important one is to note that since we only consider one transition

at a time we never need to build the BDD for the whole model. Each time we
only need to build BDD for part of the model which is relevant to the single
transition. It is sufficient to consider states that are ancestors of all targets and
guard states along with targets and guards themselves. Moreover some states on
top of the tree may be cut away as being always true (namely everything outside
the component encompassing all parts of the transition in question).
Similarly there is normally no need to represent variables for or-states explic-

itly in the BDD. A smaller alternative formula may be proposed instead of φ to
represent legal state configurations, which only concerns and-states.
Regardless of optimizations the final BDD representing φ′′(t) will always be

small since it only concerns less than ρ = |targets(t)| ·n variables, where n is the
model depth (basically only targets and their ancestors are included). This also
ensures that enumerating all satisfiable solutions for φ′′(t) is feasible space-wise.
Our implementation, including above improvements, takes currently about

2.5s to compile a model containing about 200 transitions (including the cost of
other phases of SCOPE compiler, the static scopes algorithm is called once for
each transition in the model).3

It shall be stressed that this algorithm integrates well with typical multipass
compiler architecture. Being a semantics preserving, source-to-source transfor-
mation it can be composed with other model optimizations (like guard mini-
mization, transition compaction, ect) in flexible ways.

3 Pentium III, 1GHz. The implementation uses fast BDD package Buddy[12], more
precisely its Standard ML incarnation – Muddy[7]

11



7 Related Work and Conclusion

The only hierarchical code generator for statecharts with multiple targets known
to authors uses dynamic scope resolution at runtime (unpublished protype work
of Behrmann, Iversen and Kristoffersen at Aalborg University, personal com-
munication[2]). The problem solved here is particular to the visualstate version
of statecharts. The primary reason, for which we consider it important, is that
visualstate is one of major CASE tools used in commercial deployment of em-
bedded systems and its code synthesis facilities comprise a significant part of its
development system.

Classical statecharts avoid dynamic scope problems by disallowing targets
in components orthogonal to transition itself. Other versions of statechart lan-
guages (Argos[13], SyncCharts[1]) avoid the problem by disallowing multiple
targets and even cross-level transitions (flat scoping is trivial).

Multitarget transitions do not extend the expressive power of statecharts
and thus are not strictly needed in modeling language. We do not argue that
multiple targets make development methodology cleaner and easier for users. It
is well known that overuse of force target actions leads to bad and unreadable
designs. Having said that, we should emphasize that properly implemented force
target actions yield much lower execution overhead than issuing and processing
local events (typical UML way of passing messages between system components),
which is specifically important in systems with hard time requirements.

Although multitarget transitions are visualstate specific, authors believe
that, once they are efficiently implemented, they may play an important role in
runtime representations for other statechart languages. It is a matter of future
investigation if UML-like passing of local messages can be, in certain conditions,
translated automatically to efficient multitarget transitions. This seems to be
trivially possible if instantaneous signals semantics is assumed for statecharts
as opposed to the signal queues proposed in UML (see [4, 1] for examples of
synchronous languages employing instantaneous broadcasting).

Another common language idiom for classical statecharts, to workaround the
lack of multitarget transitions, is manual multiplication of transitions, placing
several transitions which will always fire at the same time. Especially with many
targets this manual (and often habitual) multiplication may lead to nonoptimal
solutions which could be improved by a compiler reducing the problem to single
multitarget transition.

The dynamic scope resolution problem defines a class of models having in-
sufficient information for optimization by compiler with only static knowledge
about the statechart; namely models demanding multiplication and refinement
of some transitions. We believe that in most cases of transitions with dynamic
scoping the scope is actually static, because the number of legal configurations
we consider is much overestimated. It has been already mentioned that state
space reachability analysis may be used to overcome such problems. Alterna-
tively a warning may be issued to the user, who could refine guard conditions to
provide compiler with more information to increase efficiency. It is of interests to

12



identify more algorithms for detecting model deficiencies – in search for enough
information to obtain optimizing and efficient code synthesis.
We believe that there are more dynamic properties of statecharts which may

be analyzed and precomputed at compile time with only very little memory cost.
The one presented here is only the first one to start with. More remain to be
investigated. The algorithm presented increases our understanding of multitarget
transitions and encourages further investigation.

References

[1] André, C. SyncCharts: A visual representation of reactive behaviors. Tech. Rep.
TR 95-52, I3S, Sophia-Antipolis, France, October 1995.

[2] Behrmann, G., Kristoffersen, K., and G.Larsen, K. Code generation for
hierarchical systems. In NWPT’99 – The 11th Nordic Workshop on Programming
Theory (Uppsala, Sweden, Sept. 1999).

[3] Bérard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci,
L., Schnoebelen, P., and McKenzie, P. Systems and Software Verification.

Model-Checking Techniques and Tools. Springer-Verlag, Berlin-Heidelberg, 2001.
[4] Berry, G. The Esterel v5 language primer. version v5 91, JULY 2000.
[5] Björklund, D., Lilius, J., and Porres, I. Towards efficient code synthesis from
statecharts. In Practical UML-Based Rigorous Development Methods - Countering
or Integrating the eXtremists. Workshop of the pUML-Group held together with

the UML’2001 (Toronto,Canada, October 1st, 2001), A. Evans, R. France, and
A. M. B. Rumpe, Eds., Lecture Notes in Informatics P-7, GI.

[6] Bryant, R. E. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers 35, 8 (August 1986), 677–691.

[7] Friis Larsen, K., and Lichtenberg, J. MuDDy 2.0 – SML interface to the
binary decision diagrams package BuDDy. http://www.it-c.dk/research/muddy.

[8] Harel, D. Statecharts: A visual formalism for complex systems. Science of
Computer Programming 8 (1987), 231–274.

[9] Harel, D., Pnueli, A., J.P.Schmidt, and R.Sherman. On the formal seman-
tics of statecharts. In Proceedings of 2nd IEEE Symposium on Logic in Computer
Science (New York, 1988), IEEE Press, pp. 396–406.

[10] I-Logix Inc. Rhapsody
�

in MicroC. http://www.ilogix.com.
[11] IAR Inc. IAR visualSTATE

�

. http://www.iar.com/Products/VS/.
[12] Lind Nielsen, J. BuDDy – a binary decision diagram package version 2.0.
http://www.it-c.dk/research/buddy.

[13] Maraninchi, F. The Argos language: Graphical representation of automata and
description of reactive systems. In Proceedings of the IEEE Workshop on Visual
Languages (Kobe, Japan, October 1991).

[14] Object Management Group. OMG Unified Modelling Language specification,
1999. http://www.omg.org.

[15] Rational Software Corp. Rational Rose
�

Real Time (RoseRT).
http://www.rational.com/products/rosert/.

[16] Wąsowski, A., and Sestoft, P. On the formal semantics of visualSTATE
statecharts. Tech. Rep. TR-2002-19, IT University of Copenhagen, Sept. 2002.

13


