
Code Generation

and Model Driven Development

for Constrained Embedded Software

Andrzej Wąsowski

FIRST PhD School
Department of Innovation
IT University of Copenhagen

A dissertation submitted to IT University
in partial fulfillment of the requirements for the degree
of doctor of philosophy in Computer Science

Copenhagen, January 31, 2005

keywords: statecharts, embedded systems, reactive synchronous
systems, discrete control systems, execution contexts, semantics, code
generation, model transformation, flattening, process algebra, process
equivalence and refinement, context-dependent equivalence and
refinement, color-blindness, software product lines, Unified Modeling
Language, model driven development

Code Generation and Model Driven Development
for Constrained Embedded Software

�
Copyright 2005 by Andrzej Wąsowski

This revision includes improvements suggested by the defense committee.

All rights reserved. Reproduction of all or part of this dissertation
is permitted for educational or research use on condition
that this copyright notice is included in any, even partial, copy.
Copies may be obtained by contacting:

Department of Innovation
IT University of Copenhagen
Rued Langgaard Vej 7
2300 Copenhagen S
Denmark

Abstract

We consider statechart models of discrete control embedded programs oper-
ating under severe memory constraints. There have been very few results in
code generation for such systems. We analyze code generation methods for
embededded processors utilizing C as an intermediate language and runtime
interpreters. We choose a suitable subset of hierarchical statecharts and en-
gineer an efficient interpreter for programs in it. An algorithm is provided
that simplifies general models to our sublanguage removing dynamic scop-
ing and transition conflicts. The resulting code generator improves over an
industrial implementation provided by IAR A/S.
The interpreter for hierarchical statecharts is complex. We define flatten-

ing as a process of transforming hierarchical models into their hierarchy-less
counterparts. We prove that even with a simulation-based correctness cri-
terion any flattening algorithm would cause a super polynomial growth of
models, if it does not exploit message passing. Then we devise a polynomial
flattening algorithm based on internal asynchronous communication in the
model. The implementation of this algorithm beats our earlier hierarchical
code generator by 20–30% on realistic examples.
In the second part of the thesis we develop a unified theory for speci-

fying correctness of model transformations and modeling software product
lines. Our framework is based on a novel notion of color-blindness: a dy-
namically changing inability of the environment to observe differences in
system outputs. Being safe approximations of all possible usage scenarios
such environments can be used to specify specialized versions of the prod-
uct. We propose a correctness criterion for specialization algorithms based
on Larsen’s relativized bisimulation extended with color-blindness.
Any good modeling formalism for software product lines supports com-

position and step-wise modeling, so that families can be organized in hier-
archies or even more flexible structures. To serve this purpose we introduce
an information ordering on our models of environments. Crucially, we show
that the abstract information preorder can be characterized operationally
by means of simulation. Then we use the information preorder to define in-
tuitive composition operators as meets and joins in the associated quotient
lattice. We demonstrate an extended example using a hierarchical family of
alarm clocks specified by means of color-blind environments.

Preface

The work presented in this thesis has been performed during PhD studies
at the IT University of Copenhagen from August 2001 until February 2005,
while I participated in the Resource Constrained Embedded Systems project
in the Department of Innovation (Danish National Research Councils grant
no. 2051-01-0010). I would like to thank the head of the project and my
principal supervisor, Peter Sestoft, first for accepting me as a student, then
for all the time devoted to my work, and for the gentle and understanding
supervision that allowed a lot of my independence. Last but not the least,
for reading and commenting on all my papers.

The main person working in that period was my wife. Ola not only did
everything to let me focus on my project, but also gave birth to and looked
after our two sons Karol and Jakub. I am tremendously grateful to all her
devotion and support, without which I could not possibly succeed. I have to
apologize to both boys for not devoting enough time to them, especially to
Karol, whose growth and development proceeded literally in parallel to the
development of this work. Fortunately, now after three years, I experience
that his advances are much more impressive than mine. I also apologize to
my parents and sisters, and all friends and relatives in Poland, that had to
put up with our long absences from Warsaw in the past three years.

The Center for Embedded Software Systems at Aalborg University be-
came my second home during my studies. It was possible due to enormous
hospitality of its leader Kim G. Larsen, who invited me to stay with CISS
and supervised me during my stay. The theory presented in chapters 5–6
emerged during common meetings with him and Ulrik Larsen. Ulrik has
also contributed significantly as a helper editor of our paper on this topic,
which unavoidably leaves traits of his work in this thesis. Some aspects of
the flattening algorithm presented in chapter 4 are inspired by an unpub-
lished work of Gerd Behrmann of CISS. The implementation of charter, the
Java code generator mentioned in chapter 3 was made jointly with Jørgen
Steensgaard-Madsen of DTU, the author of Dulce. I would also like to thank
Henrik Hulgaard (of ITU and ConfigIt), for helping me in early months of
my studies, whenever Peter was not available.

I would like to thank my colleagues, friends, teachers and superiors that
have devoted their patience and time to help me (or just made my PhD life

iii

more enjoyable): Alexandru Barlea, Carsten Butz, Martin Elsman, Juhan
Ernits, Jan Jürjens, Ken Friis Larsen, Krzysztof Kaczmarski, Kaare Jelling
Kristoffersen, Henrik Leerberg, Henning Makholm, Erik van der Meer, Mar-
ius Mikucionis, Jørn Lind-Nielsen, George Milne, Brian Nielsen, Henning
Niss, Gergely Pinter, Henrik Reif Andersen, Jakob Rehof, Emil Sekerinski,
Volodya Shavrukov, Kent Rene Simonsen, Arne Skou, Jiri Srba, Susana
Tosca, Christian Worm Mortensen, Albert Zündorf, and Kasper Østerbye.
I should not forget any of my office mates from various places and periods:
Jens Alsted, Jakob Illum, Alexandre Krivoulets, Francois Lauze, Rasmus
Møgelberg, Rasmus Petersen, Henrik Schiøler, Sathiamoorthy Subbarayan,
Noah Torp Smith, Jun Yoneyama; and those of ITU students that were
brave enough to explore intricacies of statecharts and UML: Lars Bengts-
son, Mette Berger, Lone Gram, Karsten Pihl.
Last but not the least, this work would had never started if Bartek Klin

had not forwarded me the announcement about the vacant PhD positions at
ITU and if my superior in Warsaw, Prof. Dr hab. Bohdan Macukow in the
Department of Mathematics and Information Science at Warsaw University
of Technology had not let me go on leave to work at IT University.
All my work would become very difficult, if not impossible, without a

great mass of open source projects and other freely available tools. I had
the pleasure of using at least the following: Acrobat Reader, Buddy, bzip2,
coreutils, Cygwin, cpp2latex, CVS, Debian GNU/Linux, ddd, Dia, dulce,
epssplit, foilTEX, gcc, gdb, Gentoo Linux, Ghostscript, Gnome, GNU arch,
GNU awk, GNU Emacs, GNU grep, GNU make, GNU sed, GNU screen,
GNU tar, Gnuplot, Graphviz, GV, gzip, fxp, LATEX, Linux, Midnight Com-
mander, METAPOST, MLton, Moscow ML, Mosmake, Mozilla, Mozilla Fire-
fox, Mozilla Thunderbird, Muddy, Perl, psutils, Ratpoison, RedHat Linux,
semantics, SML/NJ, Sun Java compiler, TEX, Vim, Xfig, xfree86, xindy,
xorg-x11, and xpdf.
The Danish division of IAR Systems has provided me with tools for em-

bedded development: IAR visualSTATE, Embedded Workbench and a collec-
tion of embedded compilers. I-Logix provided Rhapsody in Micro C under
conditions of their academic program. I had the opportunity to study parts
of implementations of thermostat controllers, kindly provided by Danfoss
within the EKC project at Aalborg University.
I apologize everybody that I have omitted. I thank you all and hope that

what you find in this thesis at least partly rewards your help and support.

IAR visualSTATE is a registered trademark of IAR Systems. Rhapsody and state-

mate are registered trademarks of I-Logix Inc. Model Driven Architecture (MDA)

is a trademark of OMG Inc. Java is a registered trademark of Sun Microsystems.

Linux is a registered trademark of Linus Torvalds. All other trademarks are prop-

erty of their respective owners.

Contents

1 Introduction 1
1.1 The Language of Statecharts 3

1.2 Model Driven Development 6
1.3 Overview . 7

2 The Formal Semantics of Statecharts 10
2.1 Static Semantic Model . 10

2.2 Dynamic Semantics . 17
2.3 Related Work . 33

2.4 Summary . 36

3 Code Generation Overview 38

3.1 Requirements . 38
3.2 State of The Art . 39
3.3 Overview of SCOPE . 47

3.4 Model Transformations . 49
3.5 Related Work . 53

3.6 Summary . 55

4 Back-End & Runtime 56

4.1 Basics of the Runtime System 57
4.2 Hierarchical Back-End and Runtime 62

4.3 Flat Runtime . 70
4.4 Lower Bound for Flattening 73
4.5 Polynomial Flattening . 79

4.6 Related Work . 94
4.7 Beyond the Basics . 96

4.8 Summary . 97

5 Color-blind Semantics for Environments 99

5.1 I/O Alternating Transition Systems 100
5.2 Color-blind I/O-alternating Transition Systems 105
5.3 Composition of Behavioral Properties 114

5.4 Equivalence vs Refinement . 118

CONTENTS v

5.5 Toward Engineering Design Languages 122
5.6 Example: Output Structure 128
5.7 Discussion of Discrimination 129
5.8 Beyond the Basics . 130
5.9 Related Work . 132
5.10 Summary . 133

6 Product Line Derivation for Control Systems 134
6.1 Requirements for Model Transformations 135
6.2 The Alarm Clock Example 135
6.3 Product Line of Alarm Clocks 136
6.4 Beyond the Basics . 141
6.5 Related Work . 142
6.6 Summary . 143

7 Conclusion 144

A Quantum Programming Example 147

B SCOPE Hierarchical Engine 153

C SCOPE Flat Engine 170

D SCOPE Test Drivers 177

E An Example of SCOPE Generated Code 182
E.1 A Simple Controller Model 183
E.2 Hierarchy Tree . 184
E.3 Hierarchical Encoding . 185
E.4 Flat Encoding . 194
E.5 Stub Drivers . 203

List of Figures

1.1 A simple abstract model of a thermostat controller 3

1.2 A statechart model of the reader of this thesis 8

2.1 A hierarchical statechart and its hierarchy tree 11

2.2 UML semantics of collective scopes 28

2.3 IAR visualSTATE’s individual scopes semantics 28

3.1 A state pattern example . 40

3.2 An implementation of the state pattern 41

3.3 A C++ driver for statechart implemented in Fig. 3.2 42

3.4 Nested-switch variant of the state pattern 44

3.5 A simplified view of the architecture of SCOPE 48

4.1 A structure of SCOPE’s back-end implementation 57

4.2 Typical structure of a synthesized program 58

4.3 Direct access table storing transitions 59

4.4 An implementation of the macrostep relation. 60

4.5 Hierarchy of fig.2.1b encoded in two arrays 63

4.6 Labeling schemes for statechart hierarchy tree 63

4.7 Array encoding of the tree on the right side of Fig. 4.6 64

4.8 An example of a flat statechart 71

4.9 Anatomy of the flat statecharts of Fig. 4.8 72

4.10 (2,3)-model of and-depth 3, also a (2,3)-model of 58 states . . 75

4.11 Hierarchy tree of (2,3)-model of figure 4.10 76

4.12 An extra component decoding the binary input 78

4.13 The anatomy resulting after flattening the tree of Fig. 2.1 . . 81

4.14 Entry schedules for transitions of Fig. 2.1 83

4.15 An imprecise intuitive overview of results of flattening 85

4.16 Complete ruleset produced during flattening 86

4.17 Ministeps of the flat statecharts 94

5.1 SystemsM and I and environments E1, E2 104
5.2 Color-blind environments F1,F2 compatible withM and I . 109
5.3 A looping system L(I, o) , for I = {i1, . . . , ik} 113

LIST OF FIGURES vii

5.4 Counter example for proof of theorem 5.24 114
5.5 Systems used in the inductive step of the proof of lemma 5.27 114
5.6 Properties Interleave i1 i2 and Equiv o1 o2 117
5.7 The product and the sum of environments of Fig. 5.6 117
5.8 Simulation does not preserve deadlock freeness 119
5.9 Two way simulation does not preserve deadlock freeness . . . 121
5.10 Set-based environments E and F 124
5.11 Sum and product for sequence-based environments 125
5.12 An example of disagreement between discrimination and sim-

ulation for non-deterministic color-blind IOATS 131

6.1 Model of a general alarm clock 136
6.2 A specialized model, C1 of the alarm clock 137
6.3 Interleave snooze snoozeR . 137
6.4 An environment ignoring lightOn that responds to snooze . . 138
6.5 An alarm clock without the snooze function 138
6.6 Environment ignoring the snooze function of the clock 139
6.7 C3 combines limitations of C1 and C2 139
6.8 A clock without the snooze functions and the glowing mode . 140
6.9 Equiv glow lightOff . 140
6.10 Relationships between the environments and between systems 141

List of Tables

2.1 Output structures for typical variants of statecharts 23

4.1 Size results: IAR visualSTATE 4.3 vs SCOPE 0.11 68
4.2 Speed results: IAR visualSTATE 4.3 vs SCOPE 0.11 68
4.3 Size comparison of code generators (x86) 89
4.4 Speed comparison of code generators (x86) 90
4.5 Size comparisons of code generators (H8/300) 90
4.6 Total sizes for models compiled with avr-gcc 91
4.7 RAM usage in SCOPE . 92

List of Symbols

P(X) the set of all subsets of X (a power-set)

M(X) the set of all multisets (bags) containing elements of X

X∗ the set of all finite sequences of elements of X

X × Y cartesian product (the full relation) of sets X and Y ,

also a product of environments, see section 5.3, p. 114

X ↪→ Y the set of all partial functions from X to Y

X → Y the set of all total functions from X to Y

f
∣

∣

X
function f restricted to domain X, X ⊆ dom(f)

dom(f) the domain of function f

rng(f) the range of function f

%[v/x] substitution: v is the new value of function % for x

πn(x) the nth component of a list or a tuple (nth projection)

aR b a is in relatation R with b: (a, b) ∈ R

R∗ if R is a relation: the reflexive transitive closure of R

R+ the irreflexive transitive closure of relation R

X] Y disjoint union of multisets (bags) X and Y

a t b the least upper bound (lub) of a and b

a u b the greatest lower bound (glb) of a and b
⊔

X the least upper bound of elements of set X
d
X the greatest lower bound of elements of set X

〈a1, . . . , an〉 a list (sequence) consisting of elements from a1 to an

〈〉 an empty list

elems(L) set of all elements of list L

|L| length of list L

L � X list created from L by removing elements not in set X

[a; b] a closed interval of real numbers between a and b

[a..b] a visualSTATE type denoting integers in [a; b], see p. 13

out-degree number of edges out-going from a vertex in a graph

x LIST OF SYMBOLS

Event set of external input events for a statechart, see p. 14

Action set of outputs of a given statechart, see p. 14

Signal set of internal events in a given statechart, see p. 14

Stateand set of all and-states in a given statechart, see p. 11

Stateor set of all or-states in a given statechart, see p. 11

Exp set of all arithmetic expressions, see p. 14

Aexp set of all action expression, see p. 14

s1⊥s2 states s1 and s2 are orthogonal, see Def. 2.3 on p. 12

s1 6⊥ s2 same as ¬(s1⊥s2)

NCA(X) the nearest common ancestor of states in X,

see p. 12

ΓE a type environment of events in a statechart, p. 14

ΓF a type environment of actions in a statechart, p. 14

↘ statechart’s substate relation, see p. 11

↘2 s1↘
2 s2 iff ∃s.s1↘ s and s↘ s2, see p. 50

initial state marker, see p. 12, 25

H initial state marker in history state, see pp. 12, 25

his a set of history states, see pp. 18, 25

τ [[e]] the type of expression e, a type oracle see p. 13

ancest∗(s) the set of ancestors of state s (inclusive), see p. 12

children(s) the set of children of state s, see p. 12

en mapping from and-states to entry actions, see p. 15

ex mapping from and-states to exit actions, see p. 15

ini(s) default (initial) substate of or-state s, see p. 13

parent(s) parent state of state s, see p. 12

root the top state of statechart’s hierarchy, see p. 11

unop ranges over unary operators in C

binop ranges over binary operators in C

iscope(σ, s) scope of switching to state s in configuration σ, see p. 28

scope(σ, t) scopes of transition t fired in configuration σ, see p. 29

In in environments the set of inputs, see p. 100

Out in environments the set of all outputs, see p. 100

⊥ empty output (no output), see p. 120

Gen the set of generator states, see pp. 100, 105

Obs the set of observer states, see pp. 100, 105

S,P usually reserved for names of systems

LIST OF SYMBOLS xi

E , F usually reserved for environment names

B the blind environment, p. 106

V the perfect vision environment, p. 107

L a looping system, p. 113

ignore A observation classes distinguishing everything

but the elements of A, see 6.1 p. 136

ignore {} an environment observing all actions, see p. 136

Interleave i1 i2 an environment generating i1 and i2

in an alternating fashion, see p. 117

Equiv o1 o2 environment that cannot see the difference between

outputs o1, o2, see p. 117

equiv A observation classes unable to distinguish any

elements of A, but distinguish everyting else, p. 137

s0 the initial state of an IOATS S

S, P,E, F, . . . in environments typically reserved for generator states

s, p, e, f, . . . in environments typically reserved for observer states

Pe paritioning of Out induced by the observer e, p. 115
!
−→ generation transition relation, see pp. 100, 105

?
−→ observation transition relation see pp. 100, 105

X 6 Y process X simulates Y , see p. 5.2

X 6Y Z X simulates Z in environment Y , see p. 102

X ∼ Y X is equivalent to Y (bisimulation), see p. 101

X ≶ Y X is equivalent to Y (two way simulation), p. 121

X ∼Y Z X and Z are equivalent in Z (bisimulation), see p. 103

X ≶Y Z X and Z equivalent in Z (two-way simulation), p. 129

E v F F is more discriminating than E , by means

of relativized simulation, see p. 110

E

w

F F is more discriminating than E , by means

of two way relativized simulation, see p. 129

E<
∼F F is more discriminating than E , by means

of relativized bisimulation, see p. 129
∑

X sum of observers (generators) in X, see p. 115
∏

X product of observer (generators) in X, see p. 115,

in statecharts semantics: an output constructor, p. 21

e⊗ f product of DFA classifiers e, f , see p. 126

List of Terms

action a discrete output of the system towards the environment, an atomic
part of system’s response to enviornment’s event. See p. 14.

and-state a composite statechart state, comprising zero or more concur-
rent components. See p. 11.

blind environment the environment that is not able to distinguish any
two systems. See p. 106.

bisimulation a classic equivalence relation. See p. 103.

color-blindness a dynamic property of a transition system that it cannot
distinguish between certain kinds of outputs. See p. 105.

configuration a set of active states of a statechart. See p. 18.

DFA classifier a finite automaton used for classifying regular words into
separate sets (corresponding to states of the automaton).

discrimination preorder a preorder on IOATS induced by relativized
simulation: one environment is more discriminating than another iff it
can distinguish more systems by means of relativized simulation. See
p. 110.

generator in IOATS a state capable of producing an output. See pp. 100, 105.

entry action an action executed each time its owner state becomes active.
See p. 15.

exit action an exit action executed whenever its owner states becomes in-
active. See p. 15.

event a discrete stimulus provided by an environment (an external event)
to the system. In visualSTATE events may carry values. See p. 14.

generation relation a transition relation of an IOATS that describes its
ability to produce outputs. See pp. 100, 105.

LIST OF TERMS xiii

history state an or-state that preserves its active substate in the same
fashion as static variables in C preserve their values across function
calls. Upon activation or-state activates the one of its children, which
was active upon the most recent deactivation. See p. 12, 25

initial and-state the starting state of a given component (or-state). This
is the state that is activated when the component is activated. See
p. 12, 25

input-enabledness ability to accept any input at any given point in time.
Input enabled transition systems are non-blocking. See pp. 32, 100

iscope a scope of a state change from some configuration to a single state.
See p. 28.

NCA the nearest common ancestor of two or more states. See p. 12.

observer in IOATS a state capable of receiving inputs. See pp. 100, 105.

observation relation a transition relation of an IOATS describing its abil-
ity to accept inputs (and react to them). See pp. 100.

or-state a composite statechart state comprising one or more sequentially
related and-states (a state machine). See p. 11.

orthogonal states two statechart states are orthogonal if they can be ac-
tive at the same time (belong to concurrent parts of the model). See
p. 12.

out-degree the number of edges out-going from a vertex in a directed
graph.

perfect vision environment a universal environment that is able to dis-
tinguish any two systems of given sort. See p. 107.

relativized bisimulation bisimulation restricted to executions which can
be provided by a given environment (both compared systems are em-
bedded in the same environment before establishing the equivalence).
See p. 103.

relativized simulation Simulation restricted to executions which can be
provided by a given environment (both the refining and the refined
system are embedded in the same environment). See p. 102.

relativized two-way simulation Two-way simulation restricted to exe-
cutions which can be provided by a given environment (both systems
are embedded in the same context, before the equivalence is consid-
ered). See p. 129.

xiv LIST OF TERMS

scope a set of or-states bounding the parts of the model that will be mod-
ified by a given transition in a given state configuration. A set of
iscopes for the targets of this transition. See p. 29.

signal an internal event provided by the system to itself, or more precisely
by one of the components of the system to the other. Signals have
higher priority than events. Signals are dispatched gloabally, but may
be ignored by some components, and processed by others in the same
style as external events are. See p. 14.

simulation a classic notion of refinement, requiring the the refined system
must be able to mimick the behaviour of the refining system. See
p. 100.

state marker a flag indicating some property of a state (for example initial
states, history states).

two-way simulation an equivalence relation induced be the simulation re-
finement preorder. See p. 121.

1

Introduction

The world around us is full of electronic devices. Modern microwave ovens,
coffee makers, vending machines, radio receivers, telephones, washing ma-
chines, TV sets, light switches, hearing aids, door locks, lifts, refrigerators,
and fire detectors are controlled by microcontrollers. The number of these
special purpose computers around us has long ago exceeded the number of
personal computers.

The total sales of personal computers are reported to be below 200 mil-
lion items annually (after news.com). At the same time just one of the major
suppliers on the microcontroller market, Microchip Technology, reports that
they have sold a billion PIC microcontrollers within two years (2002–2003).
The total number of PIC microcontrollers sold exceeds three billion chips
now. Similarly another important vendor, Motorola celebrated the sales of
5 billionth 68HC05 microcontroller already in 2001. Needless to say, embed-
ded systems gain more and more attention from the academic community.
This dissertation is concerned with the programs running on these small de-
vices, commonly referred to as embedded systems, the programs themselves
dubbed embedded software.

What are the specifics of the embedded software that distinguish it from
any other kind of software? Shortly speaking: high reliability, prohibitive
cost of upgrades, and production in multiple variants. We have to trust that
the embedded software is correct: otherwise it may put our lives at risk.
Managers do expect that embedded software is correct: the cost of upgrade
is unacceptably high—in many cases it amounts to withdrawal of all the
devices sold from the market. Embedded systems are produced in multiple
versions to meet the various market needs. Most variants differ by selection
of features and their price.

Embedded programs are control programs: they indefinitely accept stim-
uli from their environment via sensors and control the environment by re-
sponses given to actuators. This is what makes them different from non-
interactive data processing programs such as compilers. Embedded pro-

2 Introduction

grams are thus best described [38] as reactive and synchronous [46]: always
ready to accept a stimulus and infinitely quickly producing a response to
the environment. Numerous embedded programs—for example all media
applications—are highly concerned with data processing, too. In this thesis
we ignore the data processing issues. We focus on discrete control specifi-
cally. Discrete control systems are typically the simplest and the smallest
of all the devices, and as such they exhibit the hardest resource constraints.

We are interested in highly constrained embedded systems, which only
have few resources available. In particular, they are restricted in the size of
available memory. It is a fact that quite a few of the embedded devices have
only a minuscule amount of writable memory. Some readers may be sur-
prised to discover this, especially if they are used to vast resources available
in personal computers.

The limitations in the size of memory are caused by several factors. More
memory uses more power, so battery-operated devices tend to be restricted.
More memory uses more physical space, while the smallest devices strive
to minimize the size. The requirements for applications grow much faster
than memory prices fall. There is a pressure to deliver on currently available
hardware. Producers want to make the maximum use of the resources paid
for. Once the amount of memory in the device is set, they still strive to
fit as much functionality in it as possible. Less memory costs less money.
With embedded devices, often being produced in hundred thousands a year,
a saving of a single US dollar per item is no longer negligible from the man-
agement’s perspective. Especially if it can be achieved without sacrificing the
user experience. Software divisions make efforts to put as low requirements
on hardware as possible.1

Last but not the least, memory is getting cheaper. Some would say it
is cheap already. Everything depends on the point of reference, though.
Memory is, perhaps, cheap relative to the total value of a workstation, but
not when compared to the cost of a small light switch. In summary: we want
our devices to be richer in features, smaller, more portable and cheaper to
produce. Because of that, it is very unlikely that we will ever stop saving
on memory in the embedded market.

Let us mention two actual cases that exemplify the above-mentioned
trends: wireless sensor networks and small hardware architectures. Bushfire
prevention projects are considering distributing wireless fire sensors over
large forested areas. A sensor is to be placed every several meters, by simply
dropping them from airplanes. Each device should be equipped not only
with a fire sensor, but also with a complete wireless communication setup.
Needless to say the authorities responsible for the project would prefer that
the price of a single item could be measured in cents rather than dollars.
Technology needed for making this a reality is emerging [107].

1Confirmed by informal communications with software divisions of several vendors.

1.1 The Language of Statecharts 3

H H

H

regulator

standby

ok

violation

alarms indicator

beeping

noAlarm

coolingOn

coolingOff
te
m
p
O
k

m
el
ti
n
g

fanOn

fanOff

d
ef
ro
ze
n

te
m
p
O
k

normal defrosting

defrost

defrost

waiting

thermostat

mode

on

on

accept

tempHigh

alarmDetected

tempOk

timerExpired

[¬defrosting] / setTimer

Figure 1.1: A simple abstract model of a thermostat controller.
Disclaimer: This model is a reminiscence of the Danfoss EKC model presented in

[71], which in turn was an academic mock-up model. As such it does not reflect the

logics and the complexity of the actual thermostat controllers supplied by Danfoss.

While major CPU vendors on the PC market are constantly racing for
higher frequencies and bigger word lengths, the embedded market is seeing a
wave of slower and smaller architectures. The recent example is the MARC4
line of microcontrollers by Atmel [22]. MARC4 is a 4-bit RISC unit, with
power consumption kept below 1 mA, explicitly targeting wireless applica-
tions. Most of the microcontrollers in this line are equipped with 8 kilobytes
of EEPROMmemory (read-only from a typical program’s point of view) and
256 4-bit memory cells of RAM. This means 128 bytes of writable memory!

1.1 The Language of Statecharts

In 1983 [43] David Harel proposed a visual language, statecharts [42], for
modeling reactive synchronous systems. Later in the thesis, we shall define

4 Introduction

and explain this language in detail. For now, let us sketch its main properties
in an informal manner.

Figure 1.1 presents a simple model of a thermostat controller for a cool-
ing device. We can see that the top state thermostat (the outermost rect-
angle) is divided in three independent regions separated by dashed lines.
These regions, regulator, alarms, and indicator, operate concurrently and syn-
chronously.

regulator

alarms indicator

thermostat

The regulator region contains a state machine responsible for regulator modes:

standby
on

mode

on

Initially this component (and the entire device) is in the standby mode,
which is indicated by a marker attached to the respective state. The
device can be turned on by pressing the on button, modeled as an event
over a transition arrow, which makes it enter one of its two major modes.

The first time the device is turned on, it enters the normal mode, which
is indicated by a H marker attached to the respective state. The mode
can be switched back and forth between the normal and defrosting mode,
by pressing the defrost button. The H symbols mean that if we switch the
device off, it will resume operation in the state in which it was interrupted,
once we turn it on again, or more abstractly: whenever the mode state is left
(by an on transition) and reentered again it will activate the same substates
that were active when it was left. If marker is used instead, then the
component is always reverted to it default state upon activation. States
containing the H marker are called history states; not the states that are
actually marked.

1.1 The Language of Statecharts 5

H H

H

coolingOn

coolingOff

te
m
p
O
k

m
el
ti
n
g

fanOn

fanOff

d
ef
ro
ze
n

te
m
p
O
k

normal defrosting

defrost

defrost

In the normal mode the cooler is turned on and off depending on the
temperature inside the refrigerator. In the defrosting mode the fan, pumping
warm air inside the fridge, is turned on, until the temperature reaches the
desired level. The mode can be changed by the user, by pressing the defrost
button.
The other two components, alarms and indicator, are responsible for han-

dling temperature alarms. If the device is not in the defrosting mode (so it
is in the normal mode) and the temperature inside raises unacceptably high,
a violation is detected. A timer is set in order to verify this violation again
after a short time. The expression in brackets placed on a transition leaving
the noAlarm state ([¬defrosting]) is called a guard. Guards further restrict
possibilities of firing the transition on top of the usual requirements that the
event occurs and the source state is active. The setTimer label following a
slash symbol is an action that executes some code influencing the hardware.
In this case it is meant to set up a timer.

noAlarm

tempHigh

tempOk

alarmDetected

[¬defrosting] / setTimer

Once the timer expires, and the temperature did not return to its ex-
pected level, the alarm is reported by means of turning on a beeper and
setting on a violation indicator. The beeper turns off automatically as soon
as the temperature falls down to the desired level. The violation indicator
stays turned on for the record, until the operator presses the accept button.
A transition leaving the waiting state (see Fig. 1.1) forks, meaning that it will
change both the active state in the alarms component and in the indicator
component.
We have said before that all the components operate concurrently and

synchronously: the entire device is able to handle only one event at a
time, and all the components react to this event synchronously and con-
currently. If the on event arrives, the regulator component will be the only
one undertaking some actions. However if the coolingOn is active and so is
alarmDetected and the tempOk event arrives, both normal and alarms state

6 Introduction

will fire their respective transitions simultaneously, activating the coolingOff
and noAlarm states respectively. Since statecharts are most often compiled
for sequential platforms, this concurrency needs to be sequentialized in some
(usually) arbitrary order.

Even without having studied the language of statecharts before, one can
immediately appreciate the use of a model in presentation of this control
algorithm. A short examination of the model gives a relatively good overview
of its works. It would be way more difficult if we had written the same
behavior as a C program. Nevertheless, despite numerous success stories,
for example the use of models in development in automotive industry and
aircraft software design [8], assembly languages and C are still the main
implementation dialects in the embedded world (see some examples in [71,
36, 115]). One of the reasons is the memory usage overhead introduced by
more abstract approaches.

1.2 Model Driven Development

Inclusion into UML [98] has brought statecharts into the very center of the
software engineering realm. Experts claim that models can boost the de-
velopment process further than just aiding documentation and design. The
Model Driven Architecture initiative [99] encourages the use of models at
all development stages: from design through implementation, validation and
deployment. In case of control models this becomes possible by application
of several technologies: model checking [20], test generation, code genera-
tion, automatic testing [125], monitoring [49] and specialization [63].

Model checking analyzes models in order to check whether they ful-
fil initial safety and quality requirements. Automatic test case generation
extracts tests from models, fulfilling various coverage criteria. Code gen-
eration, the topic of this thesis, translates models to control programs in
low-level languages. Automatic testing tests complete program implemen-
tations: it checks whether they realize legal behaviors of the model (either
by execution of precomputed test cases or referring directly to the model).
Monitored execution can detect dangerous situations by observing the soft-
ware in operation (useful in industrial installations, food storage, ERP ap-
plications, etc). Finally specialization, which is closely related to optimizing
code generation, helps to obtain several variants of the embedded program
from the same source.

Introducing models and abstractions increases the memory consumption
of the software. In this thesis we discuss the applicability of model driven
development to very constrained embedded programs. We are interested in
verifying, whether it is possible to obtain efficient code generation algorithms
targeting small devices, for example with 8 or 16 kilobytes of available mem-
ory. Following many other researchers, we set off to undermine the reign of

1.3 Overview 7

low-level languages on embedded platforms.

We are interested in the most suitable structure of the generated code
as well as the applicable optimizations. In the first part of the thesis we
analyze both of these questions from theoretical and engineering perspec-
tives. We provide data structures and algorithms for runtime executions
and compilation. We implement and evaluate them.

In the second part we focus more on theoretical issues that hopefully will
lead to new powerful technologies in future. How can one model a thermostat
that does not have a beeper, or does not have a violation indicator? How
can we automatically eliminate the functionality of alarms or the entire
defrost mode from the model? How do we model the hardware environment
of such a system? What assertions can we make about the behavior of
the restricted version of our device? In particular, can we guarantee that
it does not reach any invalid states? These questions follow from the fact
that statechart models are typically open: they do not give any information
about the behavior of the context in which the program will be embedded.
The last two chapters of this thesis are devoted to discussing the form and
the power of relevant context models.

1.3 Overview

Let yet another statechart lead us through the developments of this thesis.
Figure 1.2 presents a model of a reader. The main state machine of this
model (reading) depicts a view of the contents of this thesis. We are now in
the introduction chapter. In the next chapter, semantics, we shall formally
define the language of statecharts, then in chapter 3, code generation, we
will state the requirements for code generation, describe the major classes
of available methods and relate them to SCOPE, our code generator. Fi-
nally we shall focus on the middle layer of SCOPE, model transformations,
that simplify the language of the model in order to decrease the size of the
generated code. The two transformations discussed are the elimination of
dynamic scoping and static conflict resolution.

Chapter 4 focuses on the back-end of our tool. In this chapter we show
that it is possible to implement an efficient code generator, which explic-
itly preserves the hierarchical nesting of states in the generated code. We
demonstrate the algorithms and data structures used and evaluate the re-
sults. Our code generator performs better than the reference implementation
from the industrial partner. We do not stop there though. We continue to
investigate the succinctness gains introduced to the modeling language by
means of hierarchical nesting. We find that the saving in size of the model
is super polynomial if the language does not contain an internal message
passing mechanism. Otherwise the gain is only polynomial and we show
an efficient flattening algorithm, which eliminates the hierarchical nesting,

8 Introduction

H

H

H

H

recovering

theoretical practical knowsStatecharts

high low high low yes no

next [practical.low
∧ knowsStatecharts.yes]

activities

reader

reading

bored

3 code generation

next

next

4 back-end & runtime

recovered

next [practical.high
∧ knowsStatecharts.yes]

next [practical.low]

next [practical.high]

next next
n
ex
t

next [knowsStatecharts.no]

nextnext

next [theoretical.low]

next

[theoretical.high]

1
introduction

2
semantics

3.4
middle-layer

3.3
SCOPE

3.1–3.2
survey

4.2
hierarchical

4.1
runtime

4.4–4.5
P-flattening

4.3
flat runtime

7
conclusion

5
color blindness

6
product lines

Figure 1.2: A statechart model of the reader of this thesis

1.3 Overview 9

and only introduces a polynomial size overhead. This algorithm allows us to
implement a new back-end for SCOPE, which beats the hierarchical one and
the industrial implementation by up to 80% on some contrived examples.
Realistic examples give a gain of 25%.
In the remaining chapters of the thesis we explore the possibilities of

supporting product line modeling for reactive synchronous languages. We
devise a process algebraic theory of color-blind I/O-alternating transition
systems, suitable for modeling limited versions of hardware environments in
which our program operates. The language we propose allows hierarchical
(stepwise) modeling of product family members. In chapter 6 we demon-
strate a product family modeled with our language and discuss the possible
obstacles in tool implementation.
The statechart of Figure 1.2 can help you find your own way through

numerous sections of this work. Begin with indicating where your interest
lies. In case you are highly interested in theoretical aspects of reactive syn-
chronous development, mark the theoretical.high state as active. Otherwise
mark it low. In case your interest is more towards engineering aspects, con-
sider the practical region to be set to high. The model assumes that you
set at least one of these two areas to high (otherwise, why are you reading
so far?). The last configuration region, knowsStatecharts, lets you specify
whether you are familiar with the statechart language or not. Once you
configured the model you can start reading. Remember to send the next
event after relevant reading units and evaluate the guards according to your
configuration. If you get bored you can take a break, entering the recovering
state. Once you are recovered you can continue reading where you have fin-
ished before due to the handy semantics of history states. I wholeheartedly
wish you: no deadlocks!

2

The Formal Semantics
of Statecharts

This chapter is devoted to the formal description of the modeling language
implemented in the IAR visualSTATE tool [57]. Our goal is not to advance the
state of the art in the formal semantics of statecharts, but, rather pragmati-
cally, to give a firm unambiguous definition of the very dialect of statecharts
that we experimented with. We discuss syntactic rules, structure of runtime
objects and dynamic behaviors by means of big-step operational semantics.
Finally we shall cover a multitude of other statechart versions, indicating
differences for the most important ones.
An experienced user of statecharts may safely skip this material, return-

ing back when needed. A tool developer may find it interesting for the
discussion of various extensions not treated directly in the code generator.

2.1 Static Semantic Model

Let us begin with enumerating the components of every statechart. Some-
what unconventially and imprecisely, we state an incomplete definition first
to give an overview, and use the remaining part of the chapter to detail
various relations holding among components.

Definition 2.1. A (hierarchical) statechart is a tuple:

S=(Event,Signal,Action,VarE ,VarI ,State,Stateand,Stateor,

SimpleType,Type,ΓE ,ΓF ,ΓV ,↘, ini, his, ex, en,Trans) ,

where Event is a finite set of statechart inputs called events, Signal ⊆ Event
is a set of internal statechart events, Action is a set of statechart outputs
called actions, VarE and VarI are finite sets of external (externally acces-
sible) and internal (not exported) variables respectively, State is a finite set
of states, Stateand and Stateor are sets of and-states and or-states forming

2.1 Static Semantic Model 11

H

C11 C12

C′
1

C1

A′

A

D11 D12

D′
1

D1 D2C2

E11 E12

E′
1

E1

D E

B

root

C1

C12

exit / release()
entry / reserve()

C11

exit / exitA(x+ 1)
entry / x =enterA()

A

C2

t4
e2(n) /
x = (x+ n)%2

ED
B

D1

D11

D12

D2

E1

E12

E11

entry / lightOn()
exit / lightOff()

t3

t2

t1

/ 〈o1(), s1〉

e1 [D12∧¬E11]

e2(n) [x == 1]

s1 [¬C2] / o2()

Figure 2.1: A hierarchical statechart and its hierarchy tree

a partition of State, SimpleType is a set of simple types, Type is a set of
types, ΓE : Event → SimpleType∗ is a map defining types of environment
events, ΓF : Action → SimpleType × SimpleType∗ is a typing of functions,
ΓV : VarE ∪ VarI → Type is a typing of variables, ↘⊂ State× State a sub-
state relation, ini : State→ State is an initial marking, his ⊆ State is the set
of history states, ex and en are exit and entry action mappings , and Trans
is a finite set of syntactic transitions.

The internal structure of entry/exit action mappings and transitions will
be explained later, as soon as all the auxiliary notions utilized by them are
introduced.

2.1.1 Hierarchy of States

The sets Stateand and Stateor form a partition of the general set of states
State into two disjoint classes of and-states and or-states respectively:

State = Stateand ∪ Stateor, Stateand ∩ Stateor = ∅ (2.1)

A distinguished root or-state and the substate relation ↘⊆ State× State
form a hierarchy of states such that:

[or root] root ∈ Stateor (2.2)

[and leaves] ∀s1 ∈ Stateor. ∃s2 ∈ Stateand. s1↘ s2 (2.3)

[alternation] ∀s1, s2 ∈ State. s2↘ s1 ⇒ s1 ∈ Stateand ∧

s2 ∈ Stateor ∨ (s1 ∈ Stateor ∧ s2 ∈ Stateand) (2.4)

[rooted] ∀s ∈ State.root↘∗ s (2.5)

[acyclic] ∀s1, s2 ∈ State. ¬(s2↘
+ s1 ∧ s1↘

+ s2) (2.6)

[one parent] ∀s1, s2, s3 ∈ State. s2↘ s1 ∧ s3↘ s1 ⇒ s2 = s3 (2.7)

The substate relation imposes a tree on states, rooted in root. The
root node is an or-state and all leaves are and-states. State types alternate
between and and or on all paths from root to leaves. If s1↘ s2 then we say

12 The Formal Semantics of Statecharts

that s2 is a child of s1 with s1 = parent(s2) and s2 ∈ children(s1). Members
of the path from s to root are denoted by ancest∗(s) . The reflexive transitive
closure of children(s) is written descend∗(s) and contains all descendants of
s including s itself. Also and-states with no children are often called basic
states (or-states always have children). Below we present some values for
the example of Fig. 2.1:

Stateand = {A,B,C1, C2, D1, D2, E1, C11, C12, D11, D12, E11, E12}

Stateor = {root, A
′, D,E,C ′

1, D
′
1, E

′
1}

(↘) = {(root, A), (root, B), (A,A′), (B,D), (B,E), (A′ , C1),

(A′, C2), (D,D1), (D,D2), (E,E1), (C1, C
′
1), (D1, D

′
1), . . . }

parent(C1) = A′, children(A′) = {C1, C2}, ancest
∗(A′) = {A′, A, root},

descend∗(A′) = {A′, C1, C2, C
′
1, C11, C12}

Traditionally regions (or-states) inside non-concurrent and-states are not
named in the visual syntax for statecharts. For example a child of state A
has no explicit name. We have chosen to name all such states implicitly by
suffixing the name of their parents with a prime symbol. For example on
Fig. 2.1: children(A) = {A′}.

Definition 2.2. The nearest common ancestor of a set of and-states X,
written NCA(X), is a state y such that:

[common] ∀x ∈ X. y↘∗ x (2.8)

[nearest] ∀s ∈ State. (∀x ∈ X. s↘∗ x)⇒ s↘∗ y (2.9)

For any non-empty set of and-states X, NCA(X) always exists and is uni-
quely determined, because the ↘ relation defines a single rooted tree.

Definition 2.3. Two and-states s1 and s2 are orthogonal, written s1⊥s2 if
their NCA is an and-state: NCA(s1, s2) ∈ Stateand. A set of and-states S is
orthogonal if all pairs of its members are orthogonal.

In our example the set {D11, E1} is orthogonal, while {D11, C2} is not, since
NCA(D11, C2) = root, which is not an and-state.
The following simple fact is useful in stating basic proofs ad absurdum:

Proposition 2.4. Any set having a non-orthogonal subset is non-orthogonal
itself.

Each or-state s has a unique distinguished child marked , or H . In
the latter case, where the mark encloses the “H” letter, the state is called a
shallow history state or simply a history state. The set of all history states
is denoted his, so his ⊆ Stateor.
Whenever a history state is entered, the child that was active most re-

cently is entered. For non-history or-states state ini(s) is activated instead.
On Fig. 2.1 D is the only history state, so his = {D} and ini = [root 7→
A,A′ 7→ C1, C

′
1 7→ C11, D 7→ D1, D

′
1 7→ D11, E 7→ E1, E

′
1 7→ E11].

2.1 Static Semantic Model 13

Definition 2.5. An initial marking ini : Stateor → Stateand is a total func-
tion such that ∀s ∈ Stateor. s↘ ini(s). Members of rng(ini) are called initial
states.

2.1.2 Type System

Entities such as variables, functions and expressions are typed. Their types
resemble data types of typical programing languages. Types are only mod-
erately significant for visualSTATE code generators since all typed entities
are forwarded to the underlying C compiler, which applies its standard type
checking algorithm. This is why we only sketch the type system, without
giving the actual typing rules. Type-correctness checks have been occasion-
ally embedded in operational rules. This does not mean that the language
is dynamically typed, but reflects our choice of not giving a full static se-
mantics here.

We distinguish the following simple arithmetic types in visualSTATE:

SimpleType = { [a..b] | a, b ∈ Z ∧ a ≤ b } ∪ {float, double} (2.10)

The domain of the [a..b] type is the set of all integers in the [a; b] inter-
val, including the endpoints. Some ranges are conveniently abbreviated as
int8, uint8, int16, uint16, int32, uint32, int, and uint. The latter two denote de-
fault integer types of the C compiler on a given platform. The actual bounds
permitted for interval types are also platform dependent.

Simple types can be aggregated in vectors, so the set of all types is:

Type = {void} ∪ SimpleType ∪

∪ {t[n] | t ∈ SimpleType ∧ n > 0 ∧ n ∈ D(uint)} (2.11)

The domain operatorD(t) returns the set of values of type t (a set of integers,
rational numbers or respective vectors for a non-simple type). The domain
of void is a singleton set containing the unit value: D(void) = {()}.

Range types have been introduced in visualSTATE primarily for the sake
of verification: both to reduce the domain sizes in symbolic model checking
and to support detection of bounds violation. In visualSTATE no overflows
are checked dynamically—the values of interval types are always represented
as values of the nearest integer type and thus the standard type system of
C applies at runtime.

Occasionally we will need to write conditions about types of various non-
trivial elements (such as expressions). Instead of giving exact typing rules,
we will use a type oracle function τ [[·]] , when expressing these conditions.

14 The Formal Semantics of Statecharts

2.1.3 Expressions, Actions and Guards

A restricted form of C arithmetic expressions is supported in the language.
They are generated by the following grammar:

Exp ::= v | a | a[Exp] | unop Exp | Exp binop Exp | Aexp (2.12)

Aexp ::= f(Exp, ...,Exp), (2.13)

where v is a constant (integer or real in the domain of one of the supported
types), a is a variable access, a[Exp] is an array access, unop ranges over
unary C operators (pure operators only, so incrementation and decrementa-
tion is not supported), binop ranges over binary C operators except for the
assignment operators, and f ranges over the names of actions (functions).
We shall also distinguish a syntactic category of assignments:

Assgn ::= v "=" Exp | a[Exp] "=" Exp , (2.14)

where v ranges over scalar variable names (variables of simple types) and a
ranges over array names (variables of array type).
We will say that an expression is pure if it does not have any side ef-

fects (this requirement includes also functions called in the expression). All
expressions in the visualSTATE language are required to be pure. An ex-
pression e is closed in a set of variables V if all variables referred to in e are
members of V . An assignment v = e is closed in V if e is closed in V and
v ∈ V .
Recall that Event denotes a finite set of events, Signal ⊆ Event a finite

set of internal events (signals), and Action a finite set of model generated
outputs (actions). Also let Var be an abbreviation for the set of all variables:
Var = VarI ∪VarE. Variables, events and actions are typed.

Definition 2.6. Variable typing is a total function over the finite set of
variables Var: ΓV : Var→ Type.

Definition 2.7. Action typing is a total function:

ΓF : Action→ SimpleType × SimpleType∗ ,

where the first component of ΓF (f) is the return type of function f , while
the second component determines types of the parameters.

In visualSTATE events may be parameterized with simple constant val-
ues. This allows events to carry read outs of sensors and alike. The types
of the parameters are described by an event typing ΓE :

Definition 2.8. Event typing is a total function over the set of events:
ΓE : Event→ SimpleType∗, where components of ΓE(e) describe types of re-
spective parameters of event e.

2.1 Static Semantic Model 15

Following are the typings for the example of Fig. 2.1:

Signal = {s1}

ΓE = [e1 7→ 〈〉, e2 7→ 〈int〉, s1 7→ 〈〉]

ΓF = [o1 7→ (void, 〈〉), o2 7→ (void, 〈〉), enterA 7→ (int, 〈〉),

exitA 7→ (void, 〈int〉), reserve 7→ (void, 〈〉), release 7→ (void, 〈〉),

lightOn 7→ (void, 〈〉), lightOff 7→ (void, 〈〉)]

ΓV = [x 7→ int, y 7→ float] (2.15)

In current implementations of both IAR visualSTATE and SCOPE param-
eterized signals (i.e. internal events) are not supported, so ∀e ∈ Signal.ΓE(e) =
〈〉, providing for space-efficient implementations of signal queue.
As the type ΓE(e) describes types of parameters of event e, a binding

e(p1, . . . , pk) assigns local names to these parameters.

Definition 2.9. A name binding for an event e is a term e(p1, ..., pk), where
e is an event and p1, ..., pk are variable names, i.e.

Ebind = {e(p1, ..., pk) | k = |ΓE(e)| ∧ ∀i∈{1..k}. pi ∈ Var}

The identifiers p1, ..., pk will usually be fresh in the context. If a name
of an existing variable is used, then the parameter will hide the existing
variable in the scope of the event binding (the scope extends over a single
transition).
We will mix assignments, action expressions and signals in sequences of

type (Aexp|Assgn|Signal)∗. Such sequences are embedded into each transi-
tion and each and-state. Actions embedded in states play role similar to
actions of Moore machines [96]. One such action is performed whenever
the state is entered (entry action). The exit action is executed whenever
the state is being exited. Two action mappings for states determine what
actions are executed for what states:

en : Stateand → (Aexp|Assgn|Signal)∗

ex : Stateand → (Aexp|Assgn|Signal)∗ (2.16)

Note that these mappings are total. States that do not have actions assigned
in visual syntax, are assigned an empty list of actions 〈〉 in the abstract
syntax. In Fig. 2.1:

en =[A 7→ 〈x = enterA()〉,B 7→ 〈〉,C1 7→ 〈reserve()〉,

C2 7→ 〈〉,D1 7→ 〈〉,D2 7→ 〈〉,E1 7→ 〈lightOn()〉, . . .]

ex =[A 7→ 〈exitA(x+ 1)〉,B 7→ 〈〉,C1 7→ 〈release()〉,

C2 7→ 〈〉,D1 7→ 〈〉,D2 7→ 〈〉,E1 7→ 〈lightOff()〉, . . .] (2.17)

16 The Formal Semantics of Statecharts

While expressions are evaluated over implicit state (event parameters
and variables), guards are evaluated over explicit state (state configura-
tions). They are generated according to the following grammar:

Guard ::= true | s | ¬s | Guard ∧Guard , (2.18)

where s ranges over and-states. Both the separation of guards from expres-
sions and the syntax of guards (the lack of disjunction) are IAR visualSTATE
specific. We have chosen to adhere to this strict syntax for two reasons.
First, to make comparisons against the industrial toolkit more easy and di-
rect. Second, we believe that such rigid syntactic rules enforce a safer1 and
resource aware modeling style, which is desirable in the embedded domain.

Note that, as we shall see later in the evaluation rules, the value of guards
is always deterministic as guards are evaluated over the current state config-
uration. Possible state changes due to transition firing, do not affect values
of guards, as these only change activity of states in the next configuration.
This feature dates back to original Harel statecharts.

2.1.4 Transitions

We distinguish syntactic and semantic transitions. The former are explicitly
drawn in the model and connect states. Semantic transitions collect syn-
tactic transitions in sets fired in a single step moving from a set of state to
another set of states. In this sense semantic transitions are more abstract.
They belong to the labeled transition system, which is the execution model
of given statechart.

Each system has a finite set of syntactic transitions Trans such that:

Trans ⊆ Ebind× Stateand ×Guard × Exp×

× (Aexp|Assgn|Signal)∗ ×P(Stateand)

The components of a transition t are (from left to right): a triggering event
event(t) with parameter names params(t), the source and-state source(t), the
guard guard(t) , a pure conditional expression expr(t), a sequence of actions
and a non-empty orthogonal set of target and-states targets(t).

All expressions and assignments on the transition t = (E(p1, . . . , pk),
s0, g, e, as, {s1, . . . , sn}) must be closed in Var ∪ {p1, . . . , pk}. For clarity of
further presentation we assume that the source state is already included in
the guard condition (so g ⇒ s0).

1It is feasible to exactly interpret guards over explicit state when doing model check-
ing. Treatment of expressions is more expensive and often has to be based on imprecise
overapproximations, due to external function calls and externally accessible variables.

2.2 Dynamic Semantics 17

Following are the syntactic transitions of Fig. 2.1:

t1 = (e1(),D1,D1 ∧ D12 ∧ ¬E11, 1, 〈o1(), s1〉, {C11})

t2 = (s1,A,A ∧ ¬C2, 1, 〈o2()〉, {B})

t3 = (e2(n),C2,C2, x == 1, 〈〉, {D12,E1})

t4 = (e2(n),C1,C1, 1, 〈x = (x+ n)%2〉, {C1}) (2.19)

Often we will write the transitions in more intuitive way using an arrow,
dropping superflous empty parentheses and explicit source in the guard. For
example t1 could be written as:

D1
e1 [(D12 ∧ ¬E11) (1)]/〈o1, s1〉
−−−−−−−−−−−−−−−−−−−−−−−→{C11} (2.20)

2.2 Dynamic Semantics

IAR visualSTATE statecharts are reactive synchronous systems. Reactive
means that the system continuously responds to a stream of incoming events,
and synchronous means that the reaction to each event can be considered
infinitely fast [10, 55]. In practice this means that the system must be much
faster than the environment. Full synchrony in the sense of Berry [10] is not
guaranteed, though, due to the explicit microsteps and the use of queues.
We define the dynamic semantics of a IAR visualSTATE system by de-

scribing how expressions are evaluated, reactions executed, states (scopes)
exited and entered, and transitions fired. Then we describe the processing
of a single internal event in a so-called microstep comprising all transitions
fired in response to a single event, and specify how a sequence of microsteps
makes up a macrostep, processing a single external event. A single microstep
can place internal events in an internal signal queue. This internal events
have to be served one-by-one in the very same way as the external events are.
Thus microsteps are itereated until the queue is discharged. This complete
iteration is called a macrostep.
Last but not least we also say how a system is initialized.

2.2.1 Runtime State and Values

A variable store gives the values of system variables at a given point of
execution. Values of variables can be integer and floating point numbers,
and vectors thereof.

Definition 2.10. A store % is a total mapping of type

Store ⊆ Var→ Value, where Value =
⋃

t∈Type
D(t)

and ∀x ∈ Var. %(x) ∈ D(ΓV (x)).

18 The Formal Semantics of Statecharts

Event instances describe the actual values of event parameters at run-
time.

Definition 2.11. An instance of an event e is a term e(v1, ..., vk), where
v1, ..., vk are values consistent with event typing, i.e.

Einst = { e(v1, ..., vk) | k = |ΓE(e)| ∧ ∀i∈{1..k}.vi ∈ D(πi(ΓE(e))) } .

Similarly action instances are function prototypes where formal param-
eters have been substituted with the actual values:

Definition 2.12. An Ainst is a term f(v1, ..., vk), where v1, ..., vk are con-
stants:

Ainst = {f (v1, ..., vk) | ∀i∈{1..k}. vi ∈ D(πi(π2(ΓF (f)))) }

A signal queue is a list of pending local events, i.e. events that have been
signaled as result of some actions and have not yet been processed.

Definition 2.13. A signal queue is an ordered list of signals and event
instances: q ∈ Queue = (Signal|Einst∗).

The signal queue is a FIFO queue. The notational convention is that
new elements are concatenated at the right end of the list (suffixed). In this
sense the caret symbol ˆ is a queue constructor. Concatenation in front (left
end) is used to express internal structure of the list (prefixed event instance).
It should be understood as pattern matching.

Definition 2.14. A set of states X is a maximal orthogonal set of substates
of s iff adding any new descendant of s to X would create a non-orthogonal
set, i.e. ∀y ∈ State \X. s↘∗ y ⇒ X ∪ {y} is non-orthogonal.
A maximal orthogonal set of substates of s is called a configuration of s

if it contains only basic states.

A configuration of root state is called a global state configuration of the
statechart. The initial configuration is uniquely determined by the function
ini. The set of all configurations is denoted Σ, the set of all global config-
uration is written Σroot, and the set of all maximal orthogonal subsets of
State is written Σmax.
The set {D11, E1} is a maximal orthogonal set. It is not a configuration

though. {D11, E12} is a global state configuration (a configuration of root).
A history marking maintains runtime information of previously active

children of history states: for each history state (an or-state in the his set),
it memoizes which of its children was active most recently.

Definition 2.15. A history marking η is a total function of type
his→ Stateand such that ∀s ∈ dom(η). s↘ his(s).

2.2 Dynamic Semantics 19

The initial history marking η0 is defined as a restriction of initial mark-
ing: η0 = ini|his.

Definition 2.16. The state of the system (σ, %, η, q) consists of the current
state configuration σ, current store value %, current history marking η, and
current signal queue q.

2.2.2 Expression Evaluation

Function calls and expressions are evaluated in the current variable store.
We will avoid giving the detailed expression semantics here and denote it
by an overloaded symbol −−−→

C-sem
:

−−−→
C-sem

⊆ Store× Exp×Value (2.21)

〈%, e〉−−−→C-sem 〈v〉, where e ∈ Exp and v ∈ D(τ [[e]]) is the result of evaluation

of e in the C semantics. (2.22)

−−−→
C-sem

⊆ Store×Ainst×Value× Store

〈%0, f(v1, . . . , vk)〉−−−→C-sem 〈v, %1〉, where f(v1, . . . , vk) ∈ Ainst and v ∈ D(π1(ΓF (f)))

is the value returned in the C semantics. (2.23)

Note that the first rule (2.22) does not modify the existing store. This
is because our expressions are pure. Functions may be impure when used
outside expressions (as actions). For pure functions we have %0 = %1 in rule
2.23. Calls to impure functions may modify values of externally accessible
variables, but values of internal variables stay intact:

%0

∣

∣

VarI
= %1

∣

∣

VarI
(2.24)

Following are the rules for executing assignments. As our expressions are
required to be pure, the only side effect of the assignment is the change of the
modified variable itself. Type coercions are not shown explicitly, to avoid
clutter, but types are promoted according to ISO C rules [59, section 6.3].

−−→
asgn

⊆ Assgn× Store× Store (2.25)

〈e, %〉−−−→C-sem 〈v〉

〈x = e, %〉−−→
asgn

%[v/x]
(2.26)

〈e0, %〉−−−→C-sem
〈v0〉 v0 ≥ 0 〈e1, %〉−−−→C-sem

〈v1〉 v = %(x)[v1/v0]

〈x[e0] = e1, %〉−−→asgn %[v/x]
(2.27)

20 The Formal Semantics of Statecharts

An output relation specifies the externally visible changes to the environ-
ment. These changes are performed by means of standalone function calls
placed on transitions and as parts of entry and exit actions in states. In or-
der to emphasize that the labels of the action relation are visible externally
we will suffix them by the exclamation mark.

−−−−→
output ⊆ Aexp× Store×Ainst× Store (2.28)

∀i∈{1..k}.〈ei, %0〉−−−→C-sem
〈vi〉 〈f(v1, . . . , vk), %0〉−−−→C-sem

〈 , %1〉 %0

∣

∣

VarI
= %1

∣

∣

VarI

〈f(e1, . . . , ek), %0〉
f(v1,...,vk)!
−−−−−−−→
output 〈%1〉

(2.29)

Note that in the above rule f is not required to be pure. On the contrary,
it is supposed to have an effect on the environment of the program, and
perhaps on some variables in store.

2.2.3 Parameterizing the Semantics

Actions in a list are executed consecutively. We first give a variant of the
rules that precisely reports in what order actions are executed (sequence-
based outputs). Such level of granularity is needed if the side effects of
function calls are interdependent.

−−→
exec

⊆ (Assgn|Aexp|Signal)∗ × Store×Queue× Ainst∗ × Store×Queue

〈〈〉, %, q〉
〈〉!
−−→
exec ∗〈%, q〉

(2.30)

a ∈ Assgn 〈a, %0〉−−→asgn 〈%1〉 〈tl, %1, q0〉
os!
−−→
exec ∗〈%2, q1〉

〈〈a〉ˆtl, %0, q0〉
os!
−−→
exec ∗〈%2, q1〉

(2.31)

a ∈ Aexp 〈a, %0〉
o!

−−−−→
output

〈%1〉 〈tl, %1, q0〉
os!
−−→
exec ∗〈%2, q1〉

〈〈a〉ˆtl, %0, q0〉
(〈o〉ˆos)!
−−−−−→
exec ∗〈%2, q1〉

(2.32)

s ∈ Signal 〈tl, %0, q0ˆ〈s〉〉
os!
−−→
exec ∗〈%1, q1〉

〈〈s〉ˆtl, %0, q0〉
os!
−−→
exec ∗〈%1, q1〉

(2.33)

An alternative variant of the above rules is closer to the original formula-
tion of Harel [42, 47]. It produces sets of outputs, instead of sequences, which

2.2 Dynamic Semantics 21

reflects the environment’s inability to observe the order in which the side
effects happen. Such a formulation is sometimes considered more synchro-
nous. The following rules replace rules (2.30)–(2.33). The main differences
are in the first (2.34) and the third rule (2.36). Observe the new type of the
execution relation: P(Ainst) replaces Ainst∗. Also os denotes a set of out-
puts in the rules below, and we use set operations and not list constructors,
in the transition labels.

−−→
exec P ⊆ (Assgn|Aexp|Signal)∗ × Store×Queue×P(Ainst)× Store×Queue

〈〈〉, %, q〉
∅!
−−→
exec P〈%, q〉

(2.34)

a ∈ Assgn 〈a, %0〉−−→asgn 〈%1〉 〈tl, %1, q0〉
os!
−−→
exec P〈%2, q1〉

〈〈a〉ˆtl, %0, q0〉
os!
−−→
exec P〈%2, q1〉

(2.35)

a ∈ Aexp 〈a, %0〉
o!

−−−−→
output

〈%1〉 〈tl, %1, q0〉
os!
−−→
exec P〈%2, q1〉

〈〈a〉ˆtl, %0, q0〉
({o}∪os)!
−−−−−−→
exec P〈%2, q1〉

(2.36)

s ∈ Signal 〈tl, %0, q0ˆ〈s〉〉
os!
−−→
exec P〈%1, q1〉

〈〈s〉ˆtl, %0, q0〉
os!
−−→
exec P〈%1, q1〉

(2.37)

We could produce more output variants in a very similar way. Unfortu-
nately we would always have to rewrite the above four rules, and many other
rules to follow. Ceasing to be so explicit, we shall parameterize our seman-
tics with the type of output structure, and introduce abstract constructors
for outputs that can be instantiated for lists, sets and other structures.

Each output structure shall be characterized using four values: the type
of outputs denoted [Ainst], the empty output constructor denoted ⊥, the
cons constructor for adding a single action instance to the produced output,
and

∏

constructor for composing several (fragments of) outputs into a single
output. The types for the parameters are:

⊥ : [Ainst], cons : Ainst× [Ainst]→ [Ainst],
∏

:
[

[Ainst]
]

→ [Ainst]

(2.38)

We will also use a derived constructor cons∗—a folding of cons over one

22 The Formal Semantics of Statecharts

of the parameters:

cons∗ : [Ainst]× [Ainst]→ [Ainst]

cons∗(⊥, ys) = ys

cons∗(cons(x, xs), ys) = cons(x, cons∗(xs, ys)) (2.39)

Note that cons∗ is very similar to
∏

. Indeed they will be the same for some
typical output structures, but for some they will differ. Most notably cons∗

is meant to be order preserving, while
∏

is not necessarily (indeed we have
not put any restrictions on

∏

).

We shall consistently use these three parameters, instead of concrete
constructors, in the semantics rules. For example rules (2.32,2.36) can be
rewritten:

a ∈ Aexp 〈a, %0〉
o!
−−−→
output

〈%1〉 〈tl, %1, q0〉
os !
−−→
exec
〈%2, q1〉

〈〈a〉ˆtl, %0, q0〉
cons(o,os)!
−−−−−−→

exec
〈%2, q1〉

(2.40)

Table 2.1 summarizes interpretations for four most popular output struc-
tures in statecharts semantics: sets, multisets (bags), sequences and in-
terleavings of sequences. The first row presents a plain set-based output
structure as used in rules (2.34)–(2.37). This kind of outputs is typically as-
sociated with modeling hardware, where outputs correspond to signal wires.
It was used in early semantics of statecharts, for example [47]. A slight
extension of this semantics, the second row in the table, assumes outputs
to be multisets of actions. In this variant, among the others used in [5], the
environment is able to observe how many times a given output was produced
during a single reaction. Sequence based semantics, the third row, is prevail-
ing in code generators, as they usually synthesize deterministic sequential
programs [57, 137][103, chap.15]. As we have mentioned introducing rules
(2.30)–(2.33), this variant of the semantics assumes an interdependence be-
tween side effects, or in other words—the ability of environment to observe
the exact order in which the outputs are produced (in contrast to mere
observation of the kind of outputs, or numbers of occurrences of outputs
produced).

The last entry in Table 2.1 is a nondeterministic generalization of the
previous row. Despite the fact that synthesized programs are deterministic,
code generators often internally use somewhat nondeterministic semantics.
This reflects underspecifications like unknown order of processing of transi-
tions and a concurrent (interleaving) execution of transitions. The correct-
ness of code generation is based on a refinement relation, which amounts
to picking-up some legal sequentialization of the abstract output. The in-
terleaving of two sequences X and Y , written X ‖ Y , is understood as a

2.2 Dynamic Semantics 23

output

structure
[X] ⊥ cons : [X] ×X → [X]

Q

:
ˆ

[X]
˜

→ [X]

set →P P(X) ∅ λ(x, xs).{x} ∪ xs λX.
S

X

multiset →M M(X) ∅ λ(x, xs).{x}] xs λX.
U

X

sequence →∗ X∗ 〈〉 λ(x, xs).〈x〉ˆxs λ〈X1, . . . ,Xn〉.X1ˆ . . . ˆXn

interleaved seq. →∗∗ X∗ 〈〉 λ(x, xs).〈x〉ˆxs λ〈X1, . . . ,Xn〉.X1 ‖ . . . ‖ Xn

Table 2.1: Output structure interpretations for the most typical variants of
statecharts.

sequence of elements of X and Y interleaved, i.e. mixed in a way that rel-
ative orderings of elements within original sequences are preserved. Note
that this operator is nondeterministic.
As we shall soon see, the semantics of statecharts allows some freedom

in choosing the order of processing states. We use a partial order on states
J⊆ State× State to model permissible choices in the ordering over states.
If the order in which concurrent processing should traverse the hierarchy
is entirely nondeterministic then J is empty. In many implementations
this priority will amount to some known traversal of the hierarchy tree
(pre/in/post-order).
The impact of the state priority ordering on the observable behavior is

limited by the actual output structure (table 2.1). For example processing
order for states is irrelevant if the outputs are modeled as sets. Regardless
of what processing order is used the same set of actions will be generated.
On the other extreme, priority controls very fine grained subtleties in the
semantics, if the outputs are modeled as sequences of actions. In such case
the order of every processing is highly meaningful and leads to a different
observable behavior.

2.2.4 Exiting and Entering States

We shall now begin to describe the dynamics of firing transitions. A firing
of single transition consists of deciding whether it is enabled, computing its
scope, exiting the scope and entering the targets. The scope is a transition
specific or-state that describes an area of impact of this transitions. A given
transition only changes the current state configuration within its scope. We
shall formalize the notion of scope and various aspects of transition firing in
later sections. Presently we are interested in discussing the mechanism of
exiting an or-state (that will soon prove to be scope, so we dare to use this
name already now) and entering target states.
As we have said before, each state has an exit action assigned. This

action is executed whenever the state is exited, entailing execution of the
exit actions of all descendant states (bottom-up). Exiting affects the entire
hierarchy below a given or-state, a scope. The scope itself is not left but

24 The Formal Semantics of Statecharts

all its active descendants are. Following rules describe exiting for a ba-
sic and-state, a nonhistory and history or-states, and a non-basic and-state
respectively:

−−→
exit
⊆ State× Σmax × Store×History×Queue×

×[Ainst]× Store×History×Queue (2.41)

s ∈ Stateand children(s) = ∅ σ = {s}

〈s, σ, %, η, q〉
⊥!
−−→
exit
〈%, η, q〉

(2.42)

s ∈ Stateor ∧ s↘ s′ ∧ σ ⊆ descend∗(s′) ∧ s /∈ dom(η0)

〈s′, σ, %0, η0, q0〉
os0!−−→
exit
〈%1, η1, q1〉 ∧ 〈〈ex(s

′), %1, q1〉〉
os1−−→
exec
〈%2, q2〉

〈s, σ, %0, η0, q0〉
cons∗(os0,os1)!
−−−−−−−−−−→

exit
〈%2, η1, q2〉

(2.43)

s ∈ Stateor ∧ s↘ s′ ∧ σ ⊆ descend∗(s′) ∧ s ∈ dom(η0)

〈s′, σ, %0, η0, q0〉
os0!
−−→
exit
〈%1, η1, q1〉 ∧ 〈ex(s

′), %1, q1〉
os1!−−→
exec
〈%2, q2〉

〈s, σ, %0, η0, q0〉
cons∗(os1,os2)!
−−−−−−−−−−→

exit
〈%2, η1[s

′/s], q2〉
(2.44)

s ∈ Stateand ∧ {s1, ..., sk} = children(s) ∧ ∀i, j∈{1..k}. i < j ⇒ ¬(sj J si)

∀i∈{1..k}. 〈si, σ ∩ descend
∗(si), %i−1, ηi−1, qi−1〉

osi−1!
−−−−→
exit 〈%i, ηi, qi〉

〈s, σ, %0, η0, q0〉
Q

(os0,...,osk−1)!
−−−−−−−−−−−→

exit
〈%k, ηk, qk〉

(2.45)

The exit rules are executed in a bottom-up order. First the most nested
descendants are exited, then their parents and so on recursively until the
direct children of s. Descendants of and-state components are exited in the
components’ priority ordering J. If J orders children from left to right, then
the exit relation performs a postorder traversal of the statechart hierarchy.
If for every and-state s the priority J is a total order on its children(s), then
the order of the exiting is deterministic. Otherwise it is non-deterministic.
Also note that the history marking η (see definition 2.15) is updated directly
after a state has been exited (rule 2.44).

The well-formedness of the exit rules (that they are always called on a
proper state configuration) follows from proposition 2.17:

Proposition 2.17. Let σ be a state configuration of s, and s′ a child of
state s (s↘ s′). Then σ′ = σ ∩ descend∗(s′) is itself a state configuration of
s′.

2.2 Dynamic Semantics 25

Proof. Orthogonality follows from the fact that any subset of the orthogonal set is
itself orthogonal. Maximality is easily shown via contrapositive. If σ∩descend∗(s′)
is not maximal then σ could not be maximal either.

Entering a state resembles exiting. The entry rules of a state and its
descendants should be executed in a proper top-down order. Moreover, for
each or-state it should be determined which of its children is the default
state, determined by the current history marking or the initial marking.

Definition 2.18. The default child of a given or-state s in the current his-
tory marking η is given by:

default(s, η) =

{

ini(s) if s /∈ dom(η)

η(s) if s ∈ dom(η)

States are normally entered after a certain scope has been exited. So
we start not with a proper configuration, but with a maximal orthogonal
set of root containing some non-basic states. The entry path is not only
indicated by initial and history markings, but also by targets indicated on
the transition (in fact transition targets take precedence over the default
path). Obviously the descendants of target states should also be entered
in the process, via the default path. All this makes entering slightly more
complex than exiting. Relation −−→

enter
relates the set of targets T , root of the

part of the hierarchy being exited s, variable store %, history marking η and
signal queue q, with a new state configuration of s, new store value and a
new signal queue. The middle argument indicates the compounds output
produced in a given enter sequence:

26 The Formal Semantics of Statecharts

−−−→
enter

⊆ P(Stateand)× State× Store×History×Queue×

×[Ainst]× Σ× Store×Queue (2.46)

T = ∅ s ∈ Stateand children(s) = ∅

〈T, s, %, η, q〉
⊥!
−−−→
enter 〈{s}, %, q〉

(2.47)

T ⊆ descend∗(s) ∧ s ∈ Stateand
{s1, ..., sk} = children(s) ∧ ∀i, j∈{1..k}. i < j ⇒ ¬(sj J si)

∀i∈{1..k}. 〈T ∩ descend∗(si), si, %i−1, η, qi−1〉
osi−1!
−−−−→
enter

〈σi, %i, qi〉

〈T, s, %0, η, q0〉
Q

(os0,...,osk−1)!
−−−−−−−−−−−→

enter
〈
⋃k

i=1 σi, %k, qk〉

(2.48)

T 6= ∅ ∧ T ⊆ descend+(s) ∧ s ∈ Stateor ∧ s↘ s′↘∗NCA(T)

〈〈en(s′), %0, q0〉〉
os0!
−−→
exec 〈%1, q1〉 ∧ 〈T \ {s

′}, s′, %1, η, q1〉
os1!
−−−→
enter 〈σ, %2, q2〉

〈T, s, %0, his, q0〉
cons∗(os0,os1)!
−−−−−−−−−−→

enter 〈σ, %2, q2〉

(2.49)

T = ∅ ∧ s ∈ Stateor ∧ s′ = default(s, η)

〈〈en(s′), %0, q0〉〉
os0!−−→
exec
〈%1, q1〉 〈∅, s′, %1, η, q1〉

os1!
−−−→
enter

〈σ, %2, q2〉

〈T, s, %0, η, q0〉
cons∗(os0,os1)!
−−−−−−−−−−→

enter
〈σ, %2, q2〉

(2.50)

Well-formedness of the configuration resulting in rule 2.48 is ensured by
proposition 2.19:

Proposition 2.19. Let s be an and-state, s1, ..., sk be children of s and
σ1, ..., σk be state configurations of s1, ..., sk respectively. Then σ =

⋃k
i=1 σi

is a state configuration of s.

Proof. Show that elements of σ are basic (trivially as elements of all σi are basic),
that σ is an orthogonal set (any two states belonging to it either belong to the same
σi, and are orthogonal by assumption, or belong to two different subtrees and are
orthogonal by definition as s is their NCA), and that σ is maximal (adding any
fresh basic state would make one of σi nonorthogonal and then by proposition 2.4
it would make the entire union nonorthogonal).

Similarly to the exit semantics, the entry is nondeterministic, unless
for every and-state s the priority order J restricted to children(s) is a total
ordering. If priority functionJ orders children of and-states from left to right
then the enter relation performs preorder traversal of statechart hierarchy.
The history marking remains unchanged in the entering phase.

2.2 Dynamic Semantics 27

2.2.5 Satisfaction of Guards and Expressions

The evaluation relation induces a satisfaction relation for expressions. An
expression is satisfied if it evaluates to a non-zero value:

|= ⊆ Store × Exp (2.51)

% |= e iff 〈%, e〉−−−→
C-sem

〈v〉 ∧ v 6= 0 (2.52)

As expressions are evaluated against the store, guards (see p. 16) are eval-
uated against the state configuration:

|= ⊆ Σroot ×Guard (2.53)

σ |= true always (2.54)

σ |= s iff s ∈ σ (2.55)

σ |= ¬s iff s /∈ σ (2.56)

σ |= g0 ∧ g1 iff σ |= g0 and σ |= g1 (2.57)

2.2.6 Firing Transitions

The scope of changes involved in switching to an arbitrary state s depends
on the target state s itself and the current configuration σ. For the given
target s and a configuration σ a scope state s′ is found, i.e. the lowest
(possibly innermost) or-state such that s′↘∗ s and some of its descendants
are members in σ. The intuition is that the state change required to make
s active should be minimal.

This contrasts with a more standard choice of UML and Harel’s se-
mantics, where the scope of change is computed for all target states of a
transition collectively, instead of individually for each of the targets [103,
sec.15.3.13, p.501]. The individual semantics of scopes in visualSTATE al-
lows incorporating changes to orthogonal regions in a single transition. In
UML multiple targets cannot be used to achieve this effect, highly desired
by engineers. A heavier modeling construct, signals, needs to be applied
instead.

Figure 2.2 presents a simple example demonstrating the difference be-
tween the individual scope semantics and the collective scope semantics.
Assume that σ = {D,H} is the current state configuration and that event
e1 arrives, causing the left-most transition of the model to fire. In the col-
lective scope semantics (UML/Harel, Fig. 2.2, right) this transition has only
one scope: the root state. When it fires it has to execute the exit actions of

28 The Formal Semantics of Statecharts

B

entry: f7()
exit: f8()

C

D
entry: f3()
exit: f4()

E
entry: f5()
exit: f6()

H
entry: f9()
exit: f10() F

entry: f13()
exit: f14()

I
entry: f11()
exit: f12()

A

entry: f2()
exit: f1()

G

e1 /f15()

e2 /f16()

E

B

D

C

A

G′

root

H I

GF

Figure 2.2: A multiple target transition. Left: syntax Right: sketch of firing
semantics according to UML definition.

E EE

B

D

C

A

G′

root

H

GF

B

D

C

A

root

I

B

D

C

A

G′

root

H I

GF

I

F G

G′

H

Figure 2.3: IAR visualSTATE’s individual scope semantics: scopes for three
different active configurations.

all active states, produce f15 and entry actions of all states in the configu-
ration. This may give rise to the following sequence of actions:

ex(D)ˆex(H)ˆex(G)ˆex(A)ˆ〈a〉ˆen(A)ˆen(E)ˆen(G)ˆen(I) (2.58)

In the individual scope semantics (visualSTATE, Fig. 2.3) the state changes
are taken as locally as possible. The following sequence is one of the possible
outputs (it was not legal under the collective semantics):

ex(D)ˆex(H)ˆ〈a〉ˆen(E)ˆen(I) (2.59)

For a given target state s we need to find the closest relative in the current
configuration (the state s′ ∈ σ minimizing NCA(parent(s), parent(s′))). The
nearest common ancestor found is the (implicit) scope of the transition.

2.2 Dynamic Semantics 29

Definition 2.20. Let s be the target state and σ the current state configu-
ration (global state). The implicit scope of s in σ is defined recursively:

iscope(σ, s) =

{

parent(s) if descend∗(parent(s)) ∩ σ 6= ∅

iscope(σ, parent(s)) otherwise

The implicit scope determines the exit/entry impact of an actual state
change. All descendants of the scope will be exited when firing a transition,
and some new states (depending on targets and markings) will be entered.
Each transition has several implicit scopes: at most as many as there are
target states. Two orthogonal targets may have the same implicit scope
(for instance when simultaneously entering several components of the same
and-state).

Definition 2.21. The generalized scope of transition t in configuration σ is
the set of its implicit scopes:

scope(σ, t) = {iscope(σ, s) | s ∈ targets′(t)} ,

where targets′(t) is a normalized set of targets of t, i.e. a maximal subset of
targets(t) such that:

∀s, s′ ∈ targets(t).s↘+ s′ ⇒ s′ /∈ targets′(t)

Observation 2.22 (Scope Properties). The following simple properties
hold for individually computed scopes of targets of a single transition:

1. The implicit scope is always an or-state.

2. ∀σ, t. |scope(σ, t)| ≤ |targets(t)|.

3. The generalized scope is an orthogonal set.

Proof. The first property follows from the fact that only and-states are targets and
from definition of implicit scope. The two other facts can be proved from static
correctness conditions for transitions.

The individual scope semantics is more similar to the semantics typ-
ically applied to flat (non-hierarchical) state machines, a well established
specification language of the industry. Also it meets a typical need of com-
municating with other components in a cheaper way, than is possible with
message passing. The UML like collective-scopes semantics can be imple-
mented using individual scopes, by adding an additional target, forcing a
single global scope (in the example of Fig. 2.3 this amounts to adding state
A to the transition in question). The individual scopes semantics can be
mimicked in UML only by means of rather heavy weight multiplication of
transitions.

30 The Formal Semantics of Statecharts

The single-transition firing relation relates a transition t, the current
state configuration σ0, store %0, history marking η0 and a signal queue q0

with a new state, store, history marking and the new signal queue. This
means that while the transition is fired, a new state configuration may arise,
some variables may be modified, the history marking may be updated, and
some signals may be issued. The relation is defined by combined application
of formerly specified exit, exec and enter relations.

−−→
fire ⊆ Trans× Σroot × Store×History×Queue×

×[Ainst]× Σroot × Store×History×Queue (2.60)

scope(t, σ0) = {s1, ..., sk} ∧ ∀i, j∈{1..k}. i < j ⇒ ¬(sj J si)

∀i∈{1..k}. 〈si, σ0 ∩ descend
∗(si), %i−1, ηi−1, qi−1〉

osi−1!
−−−−→
exit

〈%i, ηi, qi〉

〈〈action(t), %k, qk〉〉
osk!
−−−→
exec
〈%k+1, qk+1〉

∀i∈{1..k}.〈targets(t)∩descend∗(si), si, %k+i, ηk, qk+i〉
osk+i!
−−−−→
enter

〈σi, %k+i+1, qk+i+1〉

σk+1 = σ0 \
(

⋃k

j=1 descend
∗(sj)

)

∪
(

⋃k

j=1 σj

)

os = cons∗(
∏

(os0, . . . , osk−1), cons
∗(osk,

∏

(osk+1, . . . , os2k)))

〈t, σ0, %0, η0, q0〉
os!
−−→
fire 〈σk+1, %2k+1, ηk, q2k+1〉

(2.61)

The following claim together with Prop. 2.17 justifies well-formedness of
configuration σk+1:

Proposition 2.23. Let σ0 be a state configuration of and-state s and
s′ ∈ children(s). If σ′ is a state configuration of s′ then

σ1 = σ0 \ descend
∗(s′) ∪ σ′

is also a configuration of s.

Proof. Divide σ in configurations for children of s using proposition 2.17. Then
exchange one of them for σ′. The union is a state configuration (Prop. 2.19).

Theorem 2.24. Let σ0 be a state configuration of and-state s and state
s′ ∈ descend(s). If σ′ is a state configuration of s′ then

σ1 = σ0 \ descend
∗(s′) ∪ σ′

is itself a state configuration of s.

Proof. Generalize proposition 2.23 by induction on depth of s′.

2.2 Dynamic Semantics 31

2.2.7 Scheduling Transitions

Definition 2.25. A transition t is enabled by an event instance
e(v1, ..., vk) ∈ Einst in state configuration σ and store % iff

e = event(t) ∧ (σ |= guard(t)) ∧ (% |= expr(t)),

Note that the assumption of purity of all expressions plays a crucial role
in the definition of satisfaction. This guarantees that whatever order we take
to iterate over the transitions in the actual implementation, the same transi-
tions will be considered enabled. Moreover, this would permit an optimized
implementation to duplicate or skip the evaluation of expressions, without
affecting the variable store. Nevertheless, this is insufficient to guarantee
determinism of the enabledness. C functions called in boolean expressions
may (and normally should) refer to external properties of devices, which in
turn are dynamic in time. Only the assumption of synchrony hypothesis
[10], that all guards are computed infinitely fast, can achieve a deterministic
computation of the enabled set.
Two transitions are in conflict if they can be simultaneously enabled and

they have overlapping scopes.

Definition 2.26. Two distinct transitions t1, t2 are in conflict in a given
state configuration σ and store % iff both are enabled and

∃s1 ∈ scope(t1), s2 ∈ scope(t2). s2↘
∗ s1 ∨ s1↘∗ s2

IAR visualSTATE disallows conflicting transitions, while UML [98] and
Harel [42] propose various conflict resolution strategies. Harel assigns a
higher priority to a transition with a source state higher in the hierarchy.
UML does the opposite [98][103, sec.15.3.12, p.493]. We model all these
choices by using the priorities order on transitions C. We assign priorities
to transitions by means of a partial ordering C⊆ Trans × Trans imposed on
the Trans set.
Two transitions are in a resolvable conflict if they are in conflict and

they are comparable in the priority ordering C. We always pick up the one
that has higher priority (greater in the C order) and disregard the other
one. All remaining conflicts are unresolvable. Unresolvable conflicts lead to
nondeterministic semantics. We write enabled(e(v1, . . . , vk), σ, %) to mean
a maximal set of enabled transitions not in an unresolvable conflict (in the
sense that adding any other transition would cause an unresolvable conflict).
Note that this set may not be uniquely determined if the model contains
unresolvable conflicts.
A single microstep of execution constitutes of firing all transitions that

are enabled by an event instance e in a given state σ0 and store %0. It also
takes care of performing a substitution of actual event instance parameter
values vj for parameter names x

i
j.

32 The Formal Semantics of Statecharts

−−−→
micro

⊆ Einst× Σroot × Store×History×Queue×

×[Ainst]× Σroot × Store×History×Queue (2.62)

enabled(e, σ0, %0) = {t1, ..., tk} ∧ ∀i, j∈{1..k}. i < j ⇒ ¬(tj C ti)

∀i∈{1..k}.〈ti[v1/xi
1, ..., vm/x

i
m], σi−1, %i−1, ηi−1, qi−1〉

osi−1
−−−→
fire
〈σi, %i, ηi, qi〉

〈〈e, σ0, %0, η0, q0〉〉

Q

(os0,...,osk−1)!
−−−−−−−−−−−→

micro 〈〈σk, %k, ηk, qk〉〉

(2.63)

where 〈xi1, ..., x
i
m〉 = params(ti) and substitution on transitions is naturally

understood as substitution in guard and action expressions.
A macrostep is a chain of microsteps initiated by a single external event.

After performing the microstep for the external event the microsteps are
reiterated over internally signaled events until the system reaches stabil-
ity (the signal queue is empty). Not surprisingly rules 2.64–2.65 resemble
while-loop execution rules for imperative languages: a macrostep is usually
implemented as a while loop performing microsteps.

−−−→
macro ⊆ Σroot × Store×History×Queue× [Ainst]× Σroot × Store×History

〈σ0, %0, η0, 〈〉〉
⊥!
−−−→
macro

〈σ0, %0, η0〉
(2.64)

〈e(v1, ..., vm), σ0, %0, η0, q0〉
os1!
−−−→
micro

〈σ1, %1, η1, q1〉 〈σ1, %1, η1, q1〉
os2!−−−→
macro

〈σ2, %2, η2〉

〈σ0, %0, η0, 〈e(v1, ..., vm)〉ˆq0〉
cons∗(os1,os2)!
−−−−−−−−−−→

macro
〈σ2, %2, η2〉

(2.65)

Finally the global transition relation is:

〈σ0, %0, η0, 〈e(v1, ..., vm)〉 〉
os!
−−−→
macro

〈σ1, %1, η1〉

〈σ0, %0, η0〉
e(v1,...,vm)? os!
−−−−−−−−−−−→〈σ1, %1, η1〉

(2.66)

This transition relation explicitly shows the input and output of the
system, emphasizing the synchronicity: the next environment input cannot
be processed, before the reaction to the previous one is terminated. We
will model this kind of systems using IO-alternating transition systems in
chapter 5.
It can be observed that according to the above semantics, statecharts

are input-enabled, i.e. for any reachable global state (σ0, %0, η0) and for every

2.3 Related Work 33

instance e(v1, . . . , vm) of environment event e ∈ Event \ Signal there exist a
reaction os and a subsequent global state (σ1, %1, η1) such that:

〈σ0, %0, η0〉
e(v1,...,vm)? os !
−−−−−−−−−−→〈σ1, %1, η1〉 (2.67)

This follows from the fact that even if the set of the enabled transitions is
empty, the microstep is still performed, producing ⊥ (see 2.63).

2.2.8 System Initialization

The initial state configuration is not given in the concrete (visual) syntax,
but must be derived from the initial marking (definition 2.5). The system
must be initialized, that is, entry actions of and-states must be executed
while building the initial state configuration. This happens by execution of
the enter relation for the root scope with an empty explicit target set:

〈∅, root, %0, η0, 〈〉〉
os!
−−→
enter
〈σ1, %1, q1〉 (2.68)

where %0 is an initial variable environment (part of the system) and
η0 = ini

∣

∣

his
is the initial history marking. Before the execution may proceed

with first external event instance, events signaled during the initialization
step should be processed:

〈〈σ1, %1, η0, q1〉〉
os′!
−−−→
macro

〈〈σ, %, η〉〉 (2.69)

The state configuration σ, variable store % and history marking his con-
stitute the initial global state for processing of the first external event.

−−→
init
⊆ [Ainst]× Σroot × Store×History (2.70)

〈∅, root, %0, η0, 〈〉〉
os0!
−−−→
enter
〈σ1, %1, q1〉 〈〈σ1, %1, η0, q1〉〉

os1!−−−→
macro

〈〈σ, %, η〉〉

cons∗(os0,os1)!
−−−−−−−−−−→

init
〈σ, %, η〉

(2.71)

2.3 Related Work

Harel’s enjoyable and easy-going introduction of statecharts [42] undoubt-
edly contributed to the significant success of the language. Notwithstand-
ing, a side-effect of this informality was the emergence of a whole family of
statechart dialects, with various features and purposes. The list includes
original Statemate statecharts [45], Selic’s real-time and object-oriented

34 The Formal Semantics of Statecharts

ROOMcharts [117], Leveson’s RMSL [77], Maraninchi’s perfectly synchro-
nous microstep-less Argos [86, 89] and OMG’s UML statechart diagrams
[102, chapt.15]—just to mention the best known. Already in 1994 von der
Beeck reported on 20 available language variants. Since then the situation
has clearly developed, but Beck’s survey [128] remains a good introductory
reading on design choices in statechart semantics even 10 years later. An-
other good reference on design choices is Huizing’s and Roever’s [55].

Unsatisfactory mathematical properties of the first formal definition [47]
initiated a still ongoing, and apparently never ending, scholarly dispute on
providing the right semantics for the language. A list of references on this,
otherwise narrow and specific, topic is truly impressive: [56, 108, 87, 88, 93,
92, 23, 79, 78, 83, 124, 33, 129, 67, 74, 75, 76, 61, 136, 85, 25, 111]. Since our
goal in this chapter was more pragmatic than innovative, we cease to discuss
each of these semantics in detail. Instead of analyzing mathematical beauty
or lack of thereof in the existing definitions, we propose a pragmatic survey,
describing practical differences between variants instead of differences in the
ways they were defined. We compare visualSTATE statecharts against two
major variants: Harel’s original statecharts and UML state diagrams.

2.3.1 Harel’s Statecharts

We shall treat Harel’s initial introduction [42] together with the subsequent
formal definitions: Harel et al. [47] and the coinciding denotational definition
of Pnueli and Shalev [108]. Harel’s language was significantly more feature-
rich than our semantics. Nevertheless most of his additional constructs
(junction transitions, initial transitions, history transitions, do reactions,
compound events, generated events etc.) can be modeled as syntactic sugar
in our definition.

The output structure of original statecharts was based on sets, roughly
corresponding to our semantics parameterized with values of the first row
of Table 2.1. Similarly to us, they used microsteps internally, but these mi-
crosteps were not clearly visible from outside. This is also the property of our
semantics instantiated for set output (the ordering of microsteps becomes
visible in the sequence version though). The semantics of firing transitions is
based on collective scopes as in UML, in contrast to visualSTATE’s individual
scopes (see section 2.2.6).

Harel allowed presence of more than one event at a time. Events were
placed in a “pool” (a set), from which they were nondeterministically se-
lected for processing. The pool played the role of signal queue in the visual-
STATE dialect. Guards were enriched with conditions on contents of the
pool, but events could not carry parameters, as they can in newer state-
chart variants.

The original paper suggested a conflict resolution strategy, by prioritiz-
ing transitions with respect to the depth of the nearest enclosing state. This

2.3 Related Work 35

corresponds to selecting the transition priority order C to be induced by
the hierarchy relation on collective scopes of transitions. Subsequent for-
malizations however, left out the problem of conflict resolution, in favor of
allowing nondeterministic models, which can be modeled in our framework
by choosing the priority order C to be empty. Harel’s definition of conflict is
also somewhat more fine-grained than ours, encompassing not only conflict-
ing scopes, but also possible concurrent assignments to the same variables.
This means that when two enabled transitions assign to the same variable,
only one of them will fire. We find this solution very unreliable, instead
advocating model checking technology [82] for statically detecting such sit-
uations in models statically and them as errors.

Similarly to our semantics neither of the two formal definitions was com-
positional, and both struggled with the problem of so called schizophrenic
models, which can report on presence and absence of a specific output in
the same step (the set of actions and events are identical in this model,
which without special protection allows writing “schizophrenic” transitions
like s [¬a]/a

−−−−−−→s′).

2.3.2 UML Statechart Diagrams

UML’s statechart diagrams incorporated many features from Selic’s ROOM-
charts [117], statecharts of statemate [45] and Rhapsody [44]. They re-
main the most popular variant of statecharts—the one which continues to
attract industrial tool developers. Our models can be seen as written in a
subset of UML statecharts language. UML deliberately lacks a standardized
formal definition. The UML standard [103, 102] remains an informal descrip-
tion sketching the notation and main semantic requirements for compliant
tools.

The main difference between Harel’s statecharts and UML statechart di-
agrams is their object-orientedness. UML statecharts describe behaviors of
communicating objects, providing ways for synchronous and asynchronous
communication. They abstract from details such as the synchrony hypoth-
esis, deferring them to the actual application domains and tool developers.
Consequently the definition of UML devotes considerably more space to
syntax and static semantics, than to details of behaviors.

Nevertheless several characteristic points can be emphasized: UML stat-
echarts are sequence oriented, allow truly concurrent transitions (our tran-
sitions are atomic and cannot be interleaved with each other) and propose
conflict resolution based on depth of transition’s scope. These correspond
roughly to parameterizing our semantics with values of the last row in Ta-
ble 2.1, an empty state priority order J and a transition priority ordering C

induced by the reverse of substate relation on transition scopes. In contrast
to Harel, UML prioritizes transitions which are nested deeper in hierarchy,
claiming that this reflects object-oriented principle better. This argument is

36 The Formal Semantics of Statecharts

somewhat unfortunate, since neither of the choices guarantees preserving of
any reasonable refinement relation, if higher priority transitions are added.
More interestingly the UML specification proposes a runtime implementa-
tion of conflict resolution based on a greedy search. In section 3.4.2 we shall
see how this costly idea can be eliminated in favor of a static algorithm.

Despite allowing asynchronous communication (message passing) UML
statecharts react to events synchronously: only one event is processed at
a time, very much in the spirit of our definition. UML does not formalize
the notion of an event queue, using an event pool instead. Various selec-
tion strategies can be proposed in actual tools [103, p.491]. Priority-based
schemes cannot be easily expressed in our semantics without any exten-
sions.2

Similarly to Harel’s statecharts, UML statecharts are richer than our
model, but many of missing constructs can be easily simulated via syntac-
tic expansions. Things that cannot be achieved are parameterized internal
events (explicitly disallowed in our model) and multiple objects communicat-
ing. There are also some terminology differences: LCA (the lowest common
ancestor) is used instead of NCA, a macrostep is usually referred to as a
run-to-completion step [103, p.491].

There is a vast number of attempts to formalize UML in mathematical
terms, especially UML statechart diagrams [79, 78, 124, 33, 118, 129, 67, 74,
75, 76, 61, 68]. These definitions do not coincide, as they make conflicting
choices for unspecified aspects of the language.

2.4 Summary

We have presented a formal definition of IAR visualSTATE statecharts. Our
goal was pragmatic, namely to give a solid and precise definition, rather
than innovative (to investigate new ways of formalization). We have given
a global non-compositional big-step semantics for statecharts, which will
be used later on as correctness specification for model transformations and
optimizations.

Our semantics was parameterized with the output-structure of the mod-
els and priority ordering on states and transitions. This way we have been
able to emphasize these differences between language dialect, which will be-
come important in later developments. We have observed that the semantics
is input-enabled, reactive, and synchronous, and that various output struc-
tures describe the level to which subtleties in the semantics are observable to
the outer environment. This parameterization has given us a crude way to
control observability of reaction changes. A code generator can freely choose
the ordering of firing transitions as long as the model of output structure

2Fixed number of priority levels can be implemented by modeling several queues using
a single queue, which is possible theoretically, but hardly feasible in realistic applications.

2.4 Summary 37

does not perceive the obtained output as different (a lot of reordering with
allowed in the set-based outputs). In chapter 5 we will discuss an advanced
framework for fine grained control over permissible changes in code genera-
tors, that would not only allow reordering but also dropping and renaming
some outputs.
A code generation algorithm is correct if for every input statechart the

behavior of the produced program is a correct refinement of the formal be-
havior of the model. For input-enabled synchronous systems many behav-
ioral refinement relations of the so called van Glabbeek’s spectrum [126, 127]
coincide. In chapter 5 we shall discuss new notions of refinement interesting
from the perspective of code generation.

3

Code Generation Overview

We shall now introduce the problem of code synthesis from statecharts and
outline the most typical solutions. We explain the general architecture of
our code generator and detail some preparatory steps that we undertake
before tackling the core problem. After reading this chapter the reader will
know all the details required by our code generation algorithms, themselves
presented in Chapter 4.

We begin with a brief statement of the problem in Section 3.1. Then, in
Section 3.2, three general approaches to code generation are described; our
work is of the third kind. Section 3.3 gives an architectural overview of our
tool, SCOPE, and also sheds some light on the methods which we used to
evaluate its efficiency. Section 3.4 focuses on model transformations applied
by SCOPE’s front-end. Section 3.5 discusses related work on transformations
of statecharts and mentions available surveys of code generation methods.

If you are predominantly interested in how SCOPE is built, you should
read sections 3.1, 3.3–3.4 and continue with chapter 4. These are also the
very sections of the present chapter that contain direct contributions. If
you are reading this text as part of a more general study of code generation
methods, you should not miss sections 3.2 and 3.5 either, for they report on
the work done by others.

3.1 Requirements

In the center of our interest is synthesis of programs from synchronous stat-
echarts. Such synthesis furnishes a platform independent program capable
of input and output: it can receive events (though the glue code generating
events needs to be provided) and can call the action functions to realize
the semantics of the model. We shall require that the generated program
conforms to the original model, implementing the macrostep semantics as
given in chapter 2. In chapter 5 we will be more specific on what the na-
ture of this conformance could be. Ultimately, we will demonstrate that

3.2 State of The Art 39

controlled relaxation of the conformance requirement leads to interesting
practical applications in development of families of control programs.

Following the de facto standard in development of embedded systems,
we shall use C [59] as our target language. This allows easy interfacing from
our code to most legacy drivers for sensors and actuators. The generated
program takes the form of a sequential kernel, which for submitted events
advances the internal state and calls action functions. The programmer,
the ultimate user of our tool, should provide the implementation of actions
and guards in C fulfilling the requirements of our semantics: guards should
be pure and actions should be relatively pure (their side effects cannot be
interdependent). This guarantees that the system remains insensitive to
variations of interpretation order for transitions and states. The running
time of all the user provided code must be negligible. Otherwise the syn-
chrony hypothesis cannot be maintained (see section 2.2.7).

Despite the use of a standardized target language, we still need to in-
dicate our execution platform. Our programs shall run on popular sequen-
tial micro-controllers, commonly embedded in small electronic devices, for
example Atmel’s AVR/ATmega series (http://www.atmel.com/products/
avr/), or Hitachi’s H8/300 family (http://www.renesas.com). We want
to challenge the domination of low-level programing languages (assembly
languages and C) on these platforms. We are not directly interested in in-
fluencing the development processes on bigger platforms such as ARM or
x86, where high-level languages are already deployed with great success. Oc-
casionally, we will report results of experiments on the Intel x86 platform,
because this is the easiest one to relate to for other researchers. Bear in
mind though that we are not interested in targeting Intel x86 as such.

Typically, the amount of memory available in an embedded application
of interest will vary between 8 and 64 kilobytes. Most of the projects that we
have seen enjoyed 16 kilobytes of total memory. In many cases most of the
memory would not be writable, leaving only one or two kilobytes for dynamic
data. Obviously most of the memory should not be used by the control
kernel, but should be left available for the developer of the application, for
his own data and code. All in all it is essential that the code we generate uses
as little memory as possible, and is especially conservative about writable
memory. This rules out the use of dynamic memory management and implies
a restricted usage of the hardware stack, avoiding parameters to function
calls and calls themselves whenever possible.

3.2 State of The Art

Let us briefly examine three major classes of approaches to code generation
from statecharts and discuss their suitability for embedded applications with
constrained resources.

40 Code Generation Overview

M

exit/o8()
entry/o7()

entry/o9()
exit/o10()

K

entry/o5()
P

exit/o6()

exit/o12()

L
entry/o11()

e3 / o14()

e3 / o13()

Class topstate

+ exit()
+ entry()
+ e3()

Class M

+ exit()
+ entry()
+ e3()

Class P

+ exit()
+ entry()
+ e3()

Class K

+ exit()
+ entry()
+ e3()

Class L

+ exit()
+ entry()
+ e3()

Figure 3.1: A state pattern example: (left) a sample statechart, and (right)
a class hierarchy created by using the state pattern to implement it.

3.2.1 State Pattern Group

The state pattern has been popularized by the well known text of Erich
Gamma and others on design patterns [39, pp. 305–313], and attributed
to Johnson and Zweig [62] therein. Its application to statecharts has been
sketched in the main UML manual of Booch et al. [17]. It encapsulates
behavior specific to each state in a separate class. The hierarchy tree of the
model is encoded in the object-oriented type system: a class representing a
given state is an extension of the class representing its parent state.

Figure 3.1 illustrates a statechart and the respective class hierarchy. Note
that the class hierarchy resembles the shape of the statechart’s decomposi-
tion tree induced by the substate relation (an example of such a tree, albeit
for a different statechart, was shown in figure 2.1). Figure 3.2 gives a com-
plete implementation of this statechart in C++. Current state is always
kept as an object pointed to by the static field topstate::current. The
methods implementing transitions are named after the firing event: only e3
in this case. Each of such methods allocates a new object for the target
state and points topstate::current to it. Deallocation is left to the caller
as deallocating an object inside its very method call is unsafe in C++ (in
Java-like languages this would be left to a garbage collector). If a given state
does not handle the e3 event then its e3() method should return zero. The
caller code is supposed to recognize this case and not attempt to deallocate
the object in such case.

Figure 3.3 shows a simple driver that, after having initialized the pro-
gram, continues to send the e3 event to the statechart indefinitely. The
initialization comprises creation of the object for the initial state K and call-
ing the required entry methods. In realistic applications this loop needs to
interface sensor drivers, either by polling the sensors or by checking some

3.2 State of The Art 41

class topstate {
public: virtual void entry()=0;

virtual void exit()=0;

virtual topstate * e3() { return 0L; }
protected: static topstate * current;

friend int main(void);

};

class P :public topstate {
public: virtual void entry() { o5(); }

virtual void exit() { o6(); }
};

class M :public topstate {
public: virtual void entry() { o7(); }

virtual void exit() { o8(); }
virtual topstate * e3() {

this->exit();

this->M::exit();

o14();

(current = new P ())->entry();

return this;

}
};

class L :public M {
public: virtual void entry() { o11(); }

virtual void exit() { o12(); }
};

class K :public M {
public: virtual void entry() { o9(); }

virtual void exit() { o10(); }
topstate * e3() {
exit();

o13();

(current = new L ())->entry();

return this;

}
};
topstate * topstate::current = 0L;

Figure 3.2: An implementation of the state pattern for statechart of Fig. 3.1

42 Code Generation Overview

int main (void) {
K * temp = new K();

temp->M::entry();

temp->K::entry();

topstate::current = temp;

while (1) {
topstate * temp = topstate::current->e3();

if (temp) delete temp;

}
}

Figure 3.3: A C++ driver for statechart implemented in Fig. 3.2

buffers for events generated by sensor drivers in concurrent threads.

Note that whenever a new state is entered, a new object is created. This
object, by means of virtual calls, performs a conflict resolution in UML
style. With UML style conflict resolution, the first e3 instance is handled by
the transition between K and L, while the second occurrence of e3 enables
the transition sourced in M. The object-oriented type system automatically
chooses the right transitions, by choosing the respective overridden imple-
mentation of the e3 method.

The major weaknesses of the state-pattern are its difficulties with sup-
porting history states and concurrency. It has been extended by Ali and
Tanaka in [1] to handle both features, unfortunately at the cost of losing its
most powerful advantage: the neat encoding of the state structure in the
object-oriented type system. In the extended version all classes represent-
ing or-states are aggregated into the classes implementing and-states. This
breaks the “magic” transition selection by virtual method calls, increases
the size of the program and decreases execution speed.

In general heavy use of object-orientation (or use of object-orientation at
all) is not suitable for the constrained applications that we consider. Massive
growth of memory consumption is the price paid for the nice abstractions.
Since we intend to generate the kernel code automatically, without support-
ing direct user interventions in this code, we would hardly benefit from the
abstractions, only pay their high price. The executable produced by com-
pilation of the C++ program of Fig. 3.2 and the main function presented
on Fig. 3.3 produces an executable of 4348 bytes (x86 platform, GCC ver.
3.3.4, optimizing for size, dynamically linked and stripped). Dynamic link-
age means that the size of memory manager is not included in this number,
but it is still needed when the application is deployed. In chapter 4 we will
show that a less direct interpreter-based method is able to achieve this exe-
cutable size for much bigger and concurrent models, even with static linking.
Moreover the big chunk of this executable will be used up by the runtime

3.2 State of The Art 43

interpreter, which is independent of the model size, meaning that the other
method will scale much better for big models.1

An implementation of the state-pattern in a non object-oriented lan-
guage can be realized by use of nested switch statements [17, p.338]. In
this case the programmer explicitly maintains information about the cur-
rent state, and uses switch statements instead of virtual functions to resolve
state-dependent behavior. Fig 3.4 demonstrates such implementation for
the example of Fig. 3.1. These two methods are nearly identical when an-
alyzed from the perspective of the native code executed in the end (switch
statements are usually compiled to dispatch tables—general kind which also
encompasses virtual tables used for dispatching virtual methods in object-
oriented languages). The nested-switch approach uses less memory than the
original object-oriented scheme (3448 bytes in this case).

Pinter and Majzik [106] attribute the nested-switch-statement technique
to the Rhapsody tool distributed by I-Logix (albeit much improved). Some-
what contradictory Zündorf [138] claims that Rhapsody uses the object-
oriented state pattern, while one of its major competitors, Rational Rose
(presently an IBM product), uses switch statements.

3.2.2 Samek’s Quantum Programing Framework

In the only published book [114] on translating statecharts to code, Miro
Samek, proposes an improvement of state pattern, using the name of quan-
tum programing.2 Instead of using objects to represent states, he uses point-
ers to event handlers. The gain is that dispatching an event to a state is
extremely cheap: one pointer indirection and function call, which is com-
piled to a single-instruction indirect jump on many architectures. The price
is that exit and entering need to be handled using special events by the same
handlers as all the usual environment events. Samek does not represent hi-
erarchy explicitly neither in the data structure, nor in the type system. The
event handlers contain nested calls to substate event handlers.

The quantum framework does not explicitly support concurrency, so the
book presents a way to achieve simple model of concurrency without mod-
ifying the framework. Each statechart is primarily sequential, but it may
incorporate objects. If each event handler takes care to forward events to
these components, then a concurrency-like effect is achieved. This happens
at the cost of code duplication: the dispatch to orthogonal components is
present in each event handler of the superstate. This is both inconvenient

1The state pattern can be implemented without dynamic memory management, by pre-
allocating all state objects needed statically and just redirecting the current state pointer
to the existing objects. This might be cheaper for small models, but still relatively ex-
pensive due to the requirement of keeping all the objects constantly in memory. Typically
the number of active states is much small than the number of all states in the model.
2The name is confusing because it has no relation to the area of Quantum Computing

44 Code Generation Overview

void state_exit(state s) {
switch (s) {
case M: o8(); break;

case K: o10(); break;

case L: o12(); break;

case P: o6();

}
}

void state_entry(state s) {
switch (s) {
case M: o7(); break;

case K: o9(); break;

case L: o11(); break;

case P: o5();

}
}

void e3() {
switch (current) {
case L: state_exit(L);

state_exit(M);

o14();

state_entry(P);

current = P;

break;

case K: state_exit(K);

o13();

state_entry(L);

current = L;

}
}

int main (void) {
current = K;

state_entry(M);

state_entry(K);

while (1)

e3();

}

Figure 3.4: An implementation of the nested-switch variant of the state
pattern (in C). Includes the driver in the main function.

3.2 State of The Art 45

for manual maintenance and expensive when code generation is used.

Nevertheless Samek claims that his method is the fastest in practice.
At the same time Pinter and Majzik report that it is known to produce
big executables [106]. They show a simple example of a statechart with-
out concurrency, taken from the [114] for which the size of the executable
implemented in Samek’s quantum framework exceeds the size of the code
generated with their code generator (EHA2C) by three times. Small experi-
ments performed in our project lead to similar observations. See appendix A
for an implementation of the statechart of Fig. 3.1. This statechart, though
extremely simple, still takes more than six kilobytes after compilation.

3.2.3 Interpretation Approach

An alternative approach to code generation relies on building a runtime rep-
resentation for the model and then providing a static interpreter for it. The
solutions from this group tend to be slower than generated native code, but
they enjoy a number of advantages. Most prominently it seems that they
are capable of yielding smaller code, with much lower writable memory con-
sumption. This is considered a more critical property than speed, as in most
statechart applications (user interfaces in embedded systems, protocols, etc)
speed does not seem to be an issue3. Memory consumption is much more
of a problem. The interpretation approach is employed by, among others,
the IAR visualSTATE code generator, EHA2C [105], Fujaba [138] and the
outcome of this thesis—the SCOPE code generator [137].

The interpretation approach is often used in generation of state machines
in other areas of computer science, most notably various implementations of
parser and lexer generators. Generation of native code is used where speed is
a real issue—for instance in explicit state model checkers, like SPIN [53] (and
in certain sense also in Uppaal [6]). Explicit state model checkers perform
an execution of finite state models as automata. For efficiency reasons the
automata are first generated as C code then compiled and executed natively.

Pintér and Majzik [106] report results of experiments evaluating the fault
tolerance of the direct approach (exemplified by the quantum framework)
against the fault tolerance of the interpretation approach (represented by
their tool EHA2C). They introduce faults by mutating single bits in the
executable. They find that the interpreter-based method detects more faults,
when only user-level fault detection mechanisms are available. The direct
method more easily fails without detection, but then the memory protection
mechanism takes over and efficiently detects more errors than the assertions
of the interpreted code. They argue that this makes the interpreted method
more suitable for small systems where memory protection is not available.
This is exactly the class of systems we are interested in.

3As suggested by industrial partners.

46 Code Generation Overview

3.2.4 BDD-based Encoding

Another alternative, different both from the simple interpretation and from
the generation of native code, is to encode the statechart semantics in terms
of more primitive constructs such as boolean equations or propositional for-
mulæ. The former are used in compilation of synchronous languages [88].
Jacobsen [60] builds a propositional logics representation for statecharts. He
encodes the reaction relation using Bryant’s reduced ordered binary decision
diagrams, also known as ROBDDs [18]. His encoding of the model closely
resembles encodings used in model-checking of statecharts [82, 50]. He only
handles flat state/event systems, which are similar to statecharts without
hierarchy. We shall discuss flat statecharts in depth in chapter 4.

In short, Jacobsen splits the reaction of the system into two relations:
one representing the state change and the other representing the outputs
being produced. Then each transition is encoded as a conjunction of the
representation of its firing condition and the representation of its action. The
whole system is encoded by a combination of disjunctions and conjunctions
of encodings of all its rules. With this encoding, finding the next state
configuration and outputs is reduced to answering satisfiability questions:
one needs to enumerate all satisfying paths in the BDD.

Splitting the reaction into two separate steps (advance the whole system
and then return the outputs) differs from the standard UML semantics (run-
to-completion step). However the difference is only visible internally. From
an external point of view the system behaves correctly. Such a construction
is also very close to the way in which hardware engineers perceive reactive
systems. Note that this split of output and next-state relations is not nec-
essarily expensive in size, since both relations will share the same variable
space and the same subexpressions, thus efficiently using sharing properties
of BDDs. There is a certain speed penalty in computing the relations twice,
as they check the same or similar conditions. It seems that the solution can
be easily adopted to the UML style (calling actions while transitions are
fired), eliminating the additional speed overhead.

Jacobsen’s thesis reports numerous variations of encodings and compares
the generated code quantitatively with the one produced by visualSTATE.
Unfortunately the results are not as good as expected, only rarely com-
peting with the simple interpretive method used in visualSTATE. The BDD
engine, which needs to be present at runtime, is typically larger than the
interpreters used in more direct methods. To make things worse the typical
BDD implementation performs logical operations on BDDs at runtime, on
the embedded platform. This requires a considerable amount of writable
memory, with very weak guarantees on the actual amount used at runtime.

All in all, the encoding approach, though scientifically appealing, still re-
mains behind more direct solutions presented before. Perhaps it still awaits
an investigator who can leverage its qualities. I am not aware of any similar

3.3 Overview of SCOPE 47

work applied to truly hierarchical systems. There are some doubts how to
efficiently transform these results to fully-fledged statecharts, with guards
in the host language, variables, and message passing.

3.3 Overview of SCOPE

Over the years of experiments our implementation, SCOPE, has grown from
a simple code generator for visualSTATE statecharts to a development toolkit
supporting various aspects of code generation. Nowadays it includes several
language front-ends, several specific back-ends, several code-generation al-
gorithms, format converters, visualizers, and a simple model checker. It is
implemented in Standard ML [95], using the BDD package BuDDy [37, 80].
In this section we present its basic design decisions.

3.3.1 Input languages

The primary input language of SCOPE is the language of statecharts as
described in chapter 2, with minor extensions. Being a visual language it
requires also a textual representation. SCOPE uses the proprietary input
format of the visualSTATE tool, as shipped in versions 4.x and 5.x. This is a
textual format which is relatively easy to read for humans and which, unlike
XMI [101], can be composed manually.

The ultimate standard format for textual representation of statecharts is
XMI [101]—XML Metadata Interchange format—standardized by OMG. To
the grief of tool builders, XMI enjoys several versions, compatible, or rather
incompatible, with a handful of UML [98] and MOF [100] versions. As such
XMI is hardly standard and hardly facilitates model exchange across tools
at this time, as various tools use various combinations of standards.

Another weakness of XMI, namely imprecision of the semantics, is in-
herited from UML. UML designers decided to give a very general informal
semantics of the language, allowing for its specific instantiations by users
and tool vendors. Models transported with XMI do not have a well-defined
semantics, and the hypothetical results of running SCOPE on the XMI input
would not be directly comparable to results produced by other tools.

Nevertheless, XMI has been available for several years now and commer-
cial tools start to incorporate it, bringing hope that it will become mature
soon. It is expected that with the advent of UML 2.0 the XMI representation
for statecharts will be greatly simplified. Unfortunately the new standard
has not been published at the time of writing these words. I do hope that
XMI support will be incorporated into upcoming versions of SCOPE.

48 Code Generation Overview

model analyses & hierarchical
back−end

flattening
back−end

hierarchy
visualisation

statechart
visualisation

dummy actuator
drivers (actions)

dummy sensor
drivers (main loop)

(visualSTATE compatible)
ISO C99 program

(SCOPE compatible)
ISO C99 program

(visualSTATE compatible)
ISO C99 program

(SCOPE compatible)
ISO C99 program

an
no

ta
te

d
ab

st
ra

ct
 s

yn
ta

x

hsm
converter

statechart
front−end

internal format

abstract
syntax

concrete
syntax

transformations

uniform abstract syntax

ISO C99 program

ISO C99 program

dot (graphviz) program

dot (graphviz) program
(serialized AST)

hsm file

Figure 3.5: A simplified view of the architecture of SCOPE code generator

3.3.2 Output Languages

The main output language of SCOPE is ISO C [59]. A range of back-ends
target C, most notably: the flattening and the hierarchical code generators
(see chapter 4), the generators of dummy action and guard functions and
the generators of dummy sensor drivers. Both generators of dummies are
instrumental in testing and evaluating the main generators mentioned above.

Other back-ends include a generator of graphviz [40] scripts for visual-
ization of models and decomposition trees, a converter to an internal binary
format and a converter to the locally developed hsm format [104, 19] (a sim-
ple textual format for statecharts, easy to parse, useful for student projects).

3.3.3 Architecture

Figure 3.5 presents the structure of SCOPE’s implementation, indicating
three layers: a layer of front-ends, a layer of transformations, and a layer of
back-ends. The front-end consists of a number of parsers; most notably of
those that parse files in IAR visualSTATE file formats.

After the initial stage, the tool applies model transformations: elimi-
nation of dynamic scopes and annotation of transition targets with scopes.
We shall explain this process in section 3.4.1. Most of the other transfor-
mations are very simple and not worth mentioning here. However, this part
of the tool has been undergoing the most heavy development recently, to
accommodate the results of chapter 6.

3.4 Model Transformations 49

The back-ends of the SCOPE code generator make use of scope annota-
tions on transitions to produce exiting and entering code, which operates
without runtime scope computations. Additional back-ends provide visu-
alization aid, by means of the graphviz package. These back-ends support
testing and reverse engineering of models and are especially useful if a license
to the visualSTATE development environment is not available.

Finally a range of back-ends producing dummy drivers is used for testing
and evaluation of the generated code. Some of these back-ends produce
dummy substitutes for all C functions called in the model (actuator drivers).
These back-ends come in two kinds: one that generates completely empty
functions with no dependencies on libraries; and one that generates functions
sending observable outputs to standard output, which are then used for
black-box testing. Naturally the empty implementations of actions are used
whenever we compare the size of binaries produced of generated code, so
that the size of libraries does not distort the outcome of comparisons.

Similarly, SCOPE provides back-ends that generate sensor code used in
testing. There are three variants of these back-ends: a minimal one (for code
size evaluation), a random one (for uncontrolled tests) and one translating
events from standard input to model inputs (for controlled black-box tests).
The minimal back-end is independent of any libraries. It calls the macrostep
function in a non-terminating loop, assuming a fixed environment event
as input. As with actuators, these back-ends come in two flavors: one
compatible with SCOPE and one compatible with visualSTATE.

Given such an abundance of back-ends, it is clear that SCOPE is highly
retargetable. In fact more back-ends have been planned, shortly before these
lines were written. In future SCOPE will support a custom format used in
development of thermostat controllers by Danfoss (see section 4.7 and [71]).

3.4 Model Transformations

3.4.1 Elimination of Dynamic Scopes

As we have mentioned in section 2.2.6, visualSTATE implements individual
scope semantics exhibiting the problem of dynamic scopes. For some tran-
sitions, namely dynamically scoped transitions, it is impossible to determine
the scope of the transition statically at compile time (see Fig. 2.3). We
have modeled this theoretically by computing the value of iscope function
at runtime (see definitions 2.20-2.21 and rule 2.61). This is not acceptable
in implementations of resource-aware code generators, as it complicates the
logics of the runtime interpreter significantly. It uses more space and slows
down the interpretation of all transitions, also statically scoped ones.

Various optimizations can be applied to improve efficiency of scope com-
putation. We think, however, that the most efficient solution is to transform
the model to guarantee that all transitions have statically resolvable scopes

50 Code Generation Overview

and then precompute scopes at compile time. In this case it is possible
to remove all scope resolution support from the interpreter, making it sim-
pler, more orthogonal and efficient for all of the transitions without loss of
performance or increase of size in the frequent statically scoped case.

Let us give an intuition about the main idea of dynamic scope elimina-
tion. Recall the statechart of Fig. 2.2. As we have explained before, the
scope of transition D e1 [D]/f15()

−−−−−−−−−−→{E, I} consists of two or-states: state B and a
second state chosen from C or G′, depending on the current configuration.
We can split this transition into several mutually exclusive rules for which
static scope resolution is possible:

D e1 [D ∧ F]/f15()
−−−−−−−−−−−−−→{E, I}, scopes: B and C respectively (3.1)

D e1 [D ∧ G]/f15()
−−−−−−−−−−−−−→{E, I}, scopes: B and G′ respectively (3.2)

We proposed two rules instead of one and ensured that scope can be resolved
statically for each of them by extending guards with extra conditions. In
the following we discuss how to automate this task.
The scope of a transition is independent of current configuration if its

guard contains a branch excluding expression over each of its targets:

Definition 3.1. Let s1 and s2 be two distinct and-states. An expression
s1 ∧ ¬s2 is called a branch excluding expression, or simply a branch exclu-
sion, iff the parent of s2 is a substate of s1 (s1↘

2 s2).

It is not strictly necessary for a transition to contain a branch exclusion
in its guard in order to enjoy static scopes. It is however necessary that
branch exclusion is implied from transition guards and model structure. The
following theorem summarizes the above intuition: a state change enjoys
having a static scope if its guard combined with the model structure implies
a branch exclusion expression. The scope is also static when the target is
guaranteed to be included in the source configuration (a self-loop transition).

Theorem 3.2 (Branch-Exclusion). Let φ be a formula overapproximating
all state configurations of a given statechart model, but not greater than the
set of all statically legal configurations. Assume that and-state s is among
the targets of a transition t. The scope of a state change to s is static iff
one of the following conditions is satisfied:

1. There exist and-state ancestors s1, s2 of s (possibly s2 = s), such that
s1↘

2 s2 and φ ∧ guard(t)⇒ (s1 ∧ ¬s2) or

2. φ ∧ guard(t)⇒ s,

If the first condition is satisfied, then parent(s2) is the corresponding static
scope. If the second condition is satisfied, the static scope is the parent of s.

3.4 Model Transformations 51

Proof. (sketch for case 1). Take any legal configuration σ such that tran-
sition t is enabled in σ. Since σ |= φ, the assumption implies a branch
exclusion s1 ∧ ¬s2. So s1 is the closest active and-state to s in σ. Since
s1 is active and it is an and-state, it must have active descendants, includ-
ing descendants of parent(s2). By definition 2.20 parent(s2) is the scope of
state change to s in σ. The proof in reverse direction proceeds in a similar
manner.

The exclusion theorem helps to detect if a given transition is statically
scoped. It does not solve the general problem of what to do if the transition
is dynamically scoped. The way to proceed is to multiply each transition, ex-
tending its guard with suitable branch exclusions. Static resolution becomes
possible and trivial for each transition decorated in this way.

The computation begins with building a formula φ representing a safe
overapproximation of the reachable state space of the statechart in question
(for example the set of all syntactically legal state configurations). For a
given transition t we restrict the overapproximation to the set of states
which enable t, and existentially quantify away all variables that do not
represent targets, or their ancestors. We obtain an equation whose solutions
are possible activity assignments when t fires; this in turn allows extraction
of all scopes that are possible at runtime (or a little bit more if φ was indeed
an overapproximation of reachable state space). The solutions of the system
of equations may be obtained by means of a SAT-solver, or a BDD engine.
Each separate assignment represents a single concrete transition being a part
of the more abstract, dynamically scoped transition t.

φ(t) = ∃s1, . . . , sn. φ ∧ guard(t),

where {s1, . . . , sn} = State \ (
⋃

s∈targets(t)
ancest∗(s)) . (3.3)

A transition is trivially unreachable if φ(t) is not satisfiable. Lack of
solutions proves that the guard condition is contradictory and the transition
may be safely discarded, perhaps issuing a warning.

Due to the hierarchical structure of configurations, the satisfiable as-
signments of φ(t) exhibit a regular pattern: each path down the hierarchy
starts with some variables assigned true and switches permanently to false
at some point. If there exists exactly one satisfiable assignment, then by
the exclusion theorem, t has static scopes and the scopes can be inferred
from the solutions of φ(t). One needs to identify the branch exclusion (the
switch-point from true to false on the ancestors path) and use the exclusion
theorem. Note that there is no need to extend guard conditions in this case.
The existing guard is sufficient to guarantee desired properties of scopes.

Transition t is potentially dynamically scoped if φ(t) has more than one
satisfying assignment. There exists such an assignment for each potential

52 Code Generation Overview

scope. Each assignment may contain several branch exclusions, but at most
one over each target. The branch exclusions may not be contradictory as
they come from the same solution of φ(t). For each satisfiable assignment
we create a new transition tj extending the guard with branch exclusions
found in that assignment. Guard simplification may be used to ensure that
no redundant checks are introduced. Minimality of guards for newly created
transitions is not guaranteed by the algorithm itself.

The transition cloning performed by elimination of dynamic scopes is not
expensive in realistic situations. In a typical model there are only very few
(if any) transitions with dynamic scopes, and only these transitions will be
multiplied. At the same time much of the interpreter logic can be removed
from the runtime code. Experiments confirm this intuition.

Last but not the least, two or more targets may share a common scope in
a single transition. In such case the scope should only be exited and entered
once, obviously. The targets should be classified in subsets tagged with
common scopes. If the scope is dynamic it may happen that the grouping
will depend on the current configuration. This problem is also solved by the
above algorithm. Once static scopes have been inferred, the targets may be
grouped into proper categories at compile time.

The middle layer of SCOPE implements the algorithm presented above
using a BDD engine [80, 37]. We have not experienced any BDD explosion
problems while applying it, using the set of all statically legal configurations
as the approximation of reachable state space φ. The implementation was
using about 2.5s to compile a model of about 200 transitions, on a Pentium
III, 1GHz machine running Linux, including the cost of other passes of
SCOPE. The static scopes algorithm is called once for each transition in the
model. We believe that a direct algorithm, significantly less complex than
SAT-solving, can be proposed for this problem, but given the availability of
the BDD engine in the tool anyway, it was convenient to solve it in this way.
In the end it proved to be fast, too.

3.4.2 Conflict elimination

We believe that there are more dynamic properties of statecharts that may
be analyzed and precomputed at compile time with only very little memory
cost at runtime. Another suitable transformation is the conflict resolution
(see section 2.2.7). Detecting conflicts at runtime and finding the maximum
set of non-conflicting transitions, optimized with respect to priorities, is
a memory intensive task. Both the number of conflicting transitions and
the size of resolved set are unknown. The resolution requires relatively
complicated algorithms and data structures at runtime. Instead we would
like to refine the transitions again, so that conflicts are ruled out from the
model, while the original semantics is preserved. This is possible because
conflict resolution relies on a static concept of priority, which is known at

3.5 Related Work 53

compile time.
Recall that two transitions are in conflict, if they can both be enabled

at the same time, and they have targets in ancestrally related scopes (recall
the definition of scope on p. 29). For the purpose of conflict elimination we
assume that the scopes are only static. This can be obtained by applying
the algorithm of the previous section first.
Assume that φ is a formula overapproximating the reachable state space

as before. Transitions ti and tj may be in conflict if the event triggering them
is the same, φ ∧ guard(ti) ∧ guard(tj) is satisfiable, and the two transitions
have ancestrally related scopes, i.e.:

∃e, σ, %. ∃si ∈ scope(σ, ti). ∃sj ∈ scope(σ, tj).

ti ∈ enabled(e, σ, %) ∧ tj ∈ enabled(e, σ, %) ∧ (sj↘
∗ si ∨ si↘∗ sj) (3.4)

Assume, without loss of generality, that ti C tj, so the priority of tj is higher
than ti. To eliminate the potential conflict between the two transitions we
must remove from the set of configurations enabling ti those configurations
that enable also tj. This can be easily achieved by refining the guard of ti to
be guard(ti) ∧ ¬guard(tj). At this stage it is sufficient to do this refinement
syntactically. Guard minimization can simplify the resulting expressions in
the back-end later on.
Let n be the number of transitions, n = |Trans|, and the number of

literals in each single guard be bounded by some constant O(1). This is
a perfectly reasonable assumption for realistic models, where guards never
refer to all model components, even if the model is very big. Our static
conflict resolution algorithm may extend the guard of each transition with
(n − 1)O(1) new literals, during refinement. As a consequence the entire
model will grow not more than O(n). In practice the rate of growth depends
on the model itself and the accuracy of φ.
SCOPE does not currently implement static conflict resolution, but it

would be a straightforward extension to make it so. This choice directly
follows the design decision of its elder commercial relative. IAR visualSTATE
encourages developers not to rely on runtime conflict resolution, because
it only slightly contributes to succinctness of models, and the beauty of
its semantics is questionable. Most importantly, it may be prohibitively
expensive for constrained embedded systems. Instead of supporting conflict
resolution, visualSTATE chooses to detect conflicts during model checking.
All reachable conflicts are reported as errors.

3.5 Related Work

We have already mentioned von der Beeck’s extensive survey of statechart
variants [128]. Unfortunately there is no such comprehensive account of
applied work on statecharts: neither for model-checking nor code generation.

54 Code Generation Overview

Existing surveys of code generation methods are rather superficial, but I
recommend the respective parts of [114, 138, 106]. The real comprehensive
survey with experimental comparisons still awaits a brave author. To do it
well, one would have to implement all the known algorithms.
As an experiment we have implemented an interpreter for statecharts in

Standard ML that interprets the abstract syntax trees of SCOPE, following
the semantics rules very closely. Needless to say the algorithms employed
in the interpreter were complex and unacceptable for compact C programs.
This led us to static model transformation algorithms presented above.
The algorithm for elimination of dynamic scopes of section 3.4.1 was

originally published by us in [135]. Algorithms for static conflict resolution,
similar to the one of section 3.4.2, were reported independently by Diethers
and colleagues [28], and Holcombe and Bogdanov [14, 15]. Both attempts
applied this technique in the area of model validation (model checking and
testing). The present formulation, sadly reinvented again, is the first one
applied directly to code generation, presented as a standalone model trans-
formation rather than a part of sophisticated process of encoding into some
verification formalism.
We have also experimented with Java as a target platform. Pihl, Berger

and Gram, all students of IT University in Copenhagen, implemented a
code generator from a subset of statecharts targeting Java during a short
term project [104]. I personally implemented some simple models in Java
manually using the state pattern approach. Finally Steensgaard-Madsen
and myself created a tiny code generator [19] for a subset of statecharts in
Dulce [120, 121]—a framework for writing lightweight interpreters. In all
cases the size of the Java class file produced was comparable to the size of
the statically linked binary produced via C-based code generators. Given the
fact that Java implementation requires a considerable burden of the virtual
machine on all but very few embedded platforms, we have abandoned this
direction for now.
Due to our focus on discrete systems with only soft time requirements,

we have consistently ignored the technical difficulty of maintaining the syn-
chrony hypothesis. These problems are normally considered orthogonal to
the problems of efficient runtime representation and execution. Neverthe-
less we would like to mention the major branches of such work as possible
extensions to our efforts.
Amnell and colleagues [4] consider code generation from timed automata

[2] extended with tasks [35]. Timed automata can be seen as simple state-
charts, without hierarchy, where the actions have durations and deadlines.
A timed automaton is schedulable if it can be executed in a way that all the
tasks always meet their deadline. Authors of [4] propose an algorithm that
for a given schedulable timed automaton generates code, which guarantees
that the deadlines are met.
Henzinger and colleagues [51] popularize a language and methodology

3.6 Summary 55

called Giotto, targeting mostly periodical programs for heavy data process-
ing such as unattended helicopter control. Their compiler checks whether
the model provided is actually schedulable and finds a schedule that guar-
antees the time safety.

3.6 Summary

In the above chapter we have introduced the problem of code generation
from statecharts. We have sketched our requirements and described four
major classes of attempts to solve this problem: the state-pattern method,
the quantum framework, the interpretative methods and the BDD-based
method. We have argued that the tools based on interpreters are most suit-
able for small constrained embedded systems without memory protection.
This is the method used in our tool, SCOPE.
We have discussed the architecture of SCOPE, indicating available front-

ends, back-ends and internal model transformations. We have emphasized
that SCOPE’s architecture is modular and layered. SCOPE is easily retar-
getable. The generated C programs are portable.
The two main scientific contributions of this chapter are contained in sec-

tion 3.4, which describes the model transformations: elimination of dynamic
scopes and static conflict resolution. These algorithms (or rather properties
that they ensure) are prerequisites for the code generation techniques de-
scribed in the next chapter.

4

Back-End & Runtime

Our development is inevitably proceeding towards the back-end parts of
the tool. We shall now focus on the actual essence of the code generation:
translation of models to compact programs. We consider two main ways of
performing this translation: one based on flattening the hierarchical models
and one based on maintaining the hierarchy in the generated program.

Figure 4.1 recalls the structure of the entire tool, zooming into some
details of the back-end part. The gray-shaded boxes represent stages of
the code generator itself. Arrows represent data flow, or in other words
internal representations of various stages. The input of the code generator is
the output of the optimizer: a conflictless statechart annotated with static
scopes. The core of the translation is performed in the first phase: the
internal translator encodes the syntax of the model into data structures stored
in intermediate arrays. The actual addresses and sizes of integer fields are
not determined yet. This task is performed by the static data manager,
once the entire structure is known. Then the code generator translates the
intermediate arrays and the addressing/typing information into a collection
of snippets of C abstract syntax. The ultimate output of the C pretty printer
consists of several C files containing a ready to use control program. The
last two stages are both standard and simple. We will focus on the internal
translator mostly, just mentioning the important points of the static data
manager.

Our presentation will occasionally rely on the use of pseudocode and dia-
grams, both abstracting away inessential details, but both precise enough to
make the use of resources visible. For example stack allocation discipline will
be presented as in the actual C implementation, and the diagrams will make
it obvious how many bytes are used for essential data structures. Should
you need to study the actual source code of implementation, please refer to
the project website at [137]. We use the pseudocode both to present the
algorithms of the code generator (implemented in Standard ML [95]) and of
the runtime engine (a mixture of generated and hand-written C code).

4.1 Basics of the Runtime System 57

statechart
front−end

code
generator

static data
manager

internal
translator

C concrete
syntax

C abstract
syntax

abstract
syntax

concrete
syntax

abstract
syntax

model
transformations

C pretty
printer

IR + addressing data
+ int types.

intermediate
representation

Figure 4.1: A structure of SCOPE’s back-end implementation

We begin with a presentation of common principles of the runtime system
(section 4.1), shared by both hierarchical and flat versions. In section 4.2
we introduce algorithms and data structures, specific for the hierarchical
back-end. We evaluate them and measure against the stock code genera-
tor of IAR visualSTATE. In section 4.3 the specifics of the flat runtime are
discussed. The remaining part of the chapter is devoted to the problem
of flattening—translation of regular statecharts to flat ones, which can be
efficiently represented and interpreted. First we asses the lower bound for
complexity of a variant of this problem (section 4.4), then we relax the con-
ditions slightly and propose an efficient flattening algorithm (section 4.5).
We discuss the correctness of the algorithm and its efficiency. Finally we
report the related work and conclude.

Sections 4.4 and section 4.5.5 can be safely skipped by more practically
inclined readers. If you are only interested in what proves to be the most
efficient code generation scheme described in this thesis, then only read
sections 4.1, 4.3 and 4.5. The source code of hierarchical runtime engine
(not the code generator itself) is presented in Appendix B, while an example
of generated hierarchical model encoding can be found in Appendix E.3.
Source code of the flat interpreter is in Appendix C, complemented by a flat
encoding of example model in Appendix E.4.

4.1 Basics of the Runtime System

The two fundamental components of the synthesized program are the repre-
sentation of current state and the reaction relation implementing the macro-
step (see Fig. 4.2). Hardware synthesis techniques usually implement the
current state using a feedback register which is modified by the combina-

58 Back-End & Runtime

REACTION
RELATION

actions

events

next state

CURRENT STATE

TREE

SET

prev
state

Figure 4.2: Typical structure of a synthesized program

tional block implementing the macrostep relation (see for example the work
of Drusinsky in [31]). In software synthesis data structures for current state
and reaction relation are needed. The so called hierarchical code generation
uses an advanced data structure for representation of state, which allows a
very direct implementation of the transition relation. The alternative way,
called flattening code generation, embeds most structure of the state into the
transition relation itself, while leaving the state representation fairly simple.
SCOPE implements both methods.

In both cases the transitions are stored in a direct access table tranidx

containing flat lists of transitions (see diagram on Fig. 4.3). Transitions
triggered by event e belong to the Trans [e] list. Each transition is described
by the number of positive conditions pc, the number of negative conditions
nc, the lists of conditions themselves, a reference to a guard function and an
action function1, and finally the list of targets grouped by common scopes,
if the runtime supports hierarchy. In the flattening variant the scopes are
insignificant, so the targets are kept on a simple flat list.

When event e arrives, the respective list of transitions is interpreted by
a microstep loop in a manner similar to Dijkstra’s guarded commands. For
each transition it is first checked that all positive states are active and all
negative states are inactive. If this is the case then the transition is fired.
It is skipped otherwise. Figure 4.4 presents a loop implementing a single
microstep, assuming that e is the current event (compare to 2.63, p. 32).
Another loop implements the macrostep relation (2.64-2.65, p. 32):

Macrostep()

� a global integer variable e stores current event
while e 6= nil

do prev -conf ← next -conf

Microstep()
e← Dequeue()

1Guard conditions can be reduced to flat lists of positive and negated literals, because
the syntax (see 2.18, page 16) only allows negation at the variable level.

4.1 Basics of the Runtime System 59

#

#

transition 1 # transition 2 # transition 3 # transition 4 #

transition 5 # #transition 6 # transition 7 # transition 8 transition 9 #

transition 10 #

#transition 11

transition 14 ##transition 12 transition 13 transition 15

pc and-states action targets-section next transitionguardnc and-statesprev. transition ncpc

· · ·target statesmodetarget statesmode

tranidx

0

1

2

3

4

5

trans

trans

variable sizevariable size

Note: Flattening code generator

only produces one group of targets

and no mode.

Targets of a single transition

A single transition

Number of states in the

positive and negative

conditions. Uses 1 or more

array cells: each counter

takes 4 bits or, if its

bigger, multiple of 8-bits.

The size is fixed and same

for all transitions in a given

model.

Index of guard and action functions. Size like

for pc/nc: at least twice 4 bits, multiples of

8-bits if needed. Fixed and uniform size for all

transitions in a given model.

Events,

represented by

consecutive

integers, play the

role of addresses

in tranidx .

(fragments)

Figure 4.3: Direct access table storing transitions. All transitions reside
consecutively in a single integer array trans . Pointers in tranidx are indexes
to this array, not real pointers. The end of a given list is detected by
comparison with the beginning of the subsequent list.

Microstep calls the Fire function presented below. It fires a transi-
tion if the guard is satisfied. Firing comprises exiting all the target scopes,
executing the action function and entering all target states. The skeleton
of the function is generic but relies on calls to a generated guard evaluator
Eval, an action executor Exec as well as macros for decoding the transition
fields, which are model dependent. The action executor Exec also places
local signals in the queue if needed.

Fire(s : integer offset in trans)

store action and guard references from trans [s] in ac and gd .
if Eval(gd) 6= 0
then exit all scopes on the targets list which begins at trans [s]

Exec(ac)
enter each group of targets on trans [s]

return

Variables prev -conf and next -conf represent the previous and the next
state configuration. These are accessed and modified respecitvely in each
microstep.
Functions Enqueue and Dequeue implement a signal queue using a

global ringbuffer. Enqueue is called by the action executor whenever a

60 Back-End & Runtime

Microstep()

� a global integer variable e stores an event identifier
� tranidx stores offsets in trans

s← tranidx [e]
next tran : while s ≤ tranidx [e+ 1]

do
Store counter values from trans [s] in pc, nc

advance s to after nc

� Verify positive part of the guard:
s′ ← s+ pc

while s < s′

do
if Active-And(s)
then s← s+ 1
else advance s until # mark

goto next trans

� Verify the negated part of the guard:
s′ ← s+ nc

while s < s′

do if Active-And(s)
then advance s until # mark

goto next trans

else s← s+ 1
Fire(s)

Figure 4.4: An implementation of the macrostep relation.

4.1 Basics of the Runtime System 61

signal needs to placed in the queue. Single pending signals are returned to
the executor as results of the action calls. If a transition needs to trigger
more than one signal then it returns a reference to a table of signals where
unique groups that should be triggered together are stored.

Overflow safety for the signal queue is not automatically guaranteed.
The user is obliged to provide the maximal length of the signal queue or its
safe overapproximation. This bound can be obtained with knowledge of the
model and good understanding of its works. Alternatively one can use visual-
STATE model-checker to establish it. The model checker does not compute
the bound on the signal queue size, but for a given bound can check if it
is not violated. Subsequent runs of the model-checker for increasing sizes
of the signal queue may be used to establish a suitable bound. One has
to admit though that treatment of signals in the current version of visual-
STATE’s model checker (ver. 4.x-5.x) is far from satisfactory. The intensive
use of signal queue (especially queues which are longer than one or two cells),
causes an explosion of the reachable state space making the analysis highly
inefficient.

The runtime representation has been designed with modest space re-
quirements and fast access in mind. It is based on an observation that
realistic models are relatively sparse: despite the multitude of attributes
for states and transitions, developers hardly ever use all of them. Thus
commonly used elements (initial markers, source states, targets) are imple-
mented cheaply, whereas it is acceptable to use more space and access time
for exotic ones: multiple targets, complicated conditions, exit/entry actions,
history and multiple signals.

An initial marker, present once for each or-state, is an example of a
commonly used element. Initial markers take no space in SCOPE’s runtime
representation. Instead children lists are reordered, so initial states become
lists’ heads.

A typical transition only uses a simple condition (a source state and a
discrete event), an action and a single target state. These fields, stored in
the static part of the transition record, are quickly accessible using fixed
offsets. Multiple targets, a complex guard, and a transition scope are kept
in the variable section of the record. Slower and more expensive field type
indicators are used in this part, which is acceptable for rarely used elements.

Variables

According to the semantics of statecharts updates to variables should only be
visible after the microstep step is completed. The assignment to x on a tran-
sition should not affect any value of x in other expressions evaluated within
the same step. This problem is classically solved using double-buffering of
variables, where the lvalue and the rvalue of a variable are separated. This
is materially the very same technique that was described before for state

62 Back-End & Runtime

configurations (use of previous and next configurations). Two runtime vari-
ables are maintained for each model variable. One copy (rvalue) is used for
reads, the other (lvalue) for write accesses. After the step is completed the
lvalues are copied over the rvalues. If the number of variables is big, the
cost of this operation may be significant. Also the size of writable memory
employed increases. For this reason developers of highly constraint systems
avoid double buffering, following the modeling style which is not prone to
such subtleties.
Currently SCOPE does not implement double-buffering, although the

extension would be straightforward. All experiments with visualSTATE (see
section 4.2.4) have been performed with double buffering switched off to
account for this lack.

Command and Expression Code

Despite the advances in optimization technology C compilers face hard prob-
lems caused by the type system and highly imperative semantics of the lan-
guage. For instance, an automatic code generator is rather likely to produce
redundant identical pieces of code, including complete function bodies. The
C compiler must maintain all identical pieces to guarantee correctness of
pointer comparisons (if function pointers are used). To avoid this identical
pieces of code should not be generated to begin with. We implement a dy-
namic table of C code snippets which only saves fragments not seen before.
We use it then to build the actual C program. This uniqueness detection
uses a trivial syntactic criterion (identity), sufficient for automatically gen-
erated code and reasonable for user written code as we speak of short actions
and expressions without local variables.

4.2 Hierarchical Back-End and Runtime

Hierarchical code generation keeps the resulting program as close as possible
to the semantics of the model. Not only the behavior is preserved, but also
the syntactical structure of the model is mimicked. Thus numerous syntactic
objects of statecharts, like entry/exit actions, history states and notably
the substate relation, are explicitly represented in the generated program
and are present at runtime. This way it is easy to establish correctness
of implementation. Also the linear relationship between the size of the
model and the size of the generated program is obvious. Consequently a
hierarchical code generator does not encode models in any complex way.
The translation itself is straightforward, but the focus is on the design of
efficient data structures for model representation.
The main difficulty of the hierarchical code generator is an efficient run-

time representation, so that generated programs are not only asymptotically
linear in the size of the model, but also the coefficient of the size function is

4.2 Hierarchical Back-End and Runtime 63

root

A

A

A

B

#

#

D

B

C1

A′

E

C2

#

#

C′
1

C1

D1

D

#

D2

#

C2

#

D′
1

D1

E1

E

#

#

#

D2

C11

C′
1

E′
1

E1

C12

#

#

#

C11

D11

D′
1

#

C12

D12

#

D11

#

#

D12

E11

E′
1

#

E11

E12

#

E12

#or-states

and-states

Figure 4.5: Hierarchy of fig.2.1b encoded in two arrays

1 2 6

1

1

10 117

4 6 9 10

6

1

C′
1

A′

5

7

D′
1

8

11

E′
1

12

D E

13

root

2

3 4

6 10

9

1

7

6

5

7

5

8

3

12

2

1

2

3 4

6 10

9

11

4

13

Figure 4.6: Labeling schemes for statechart hierarchy tree

low enough, so that the generated code remains competitive even for small
models as often met in the industrial practice. The hierarchical code gener-
ator of SCOPE shows that this goal can be achieved. It performs reasonably
on small and simple models. Results are especially good for bigger models,
when it clearly wins with the industrial implementation based on flattening.
One of the main reasons for which this became possible, is the elimination
of dynamic scopes and conflicts, performed in the optimizer, allowing the
removal of complicated machinery from the runtime interpreter.

4.2.1 Hierarchy Tree

The hierarchy tree is the essential data structure of hierarchical runtime rep-
resentation. The tree itself is encoded in an integer array stored in a read-
only memory. We exploit the regularity of state type alternation between
and and or to recognize state type by its position in the tree, saving both
space (no runtime type information) and time (no dynamic type-checks).
Additionally and-states and or-states have separate name spaces, so identi-
fiers are reused and become shorter. The two parts of the tree are saved in
separate arrays. Figure 4.5 sketches an array representation for the tree of
Fig. 2.1. All additional state attributes including parent information and
entry/exit actions are omitted. The # marks denote endings of records.

In practice state addresses (array indexes) are used as state identifiers.
If any of the two arrays is longer than the integer type sufficient to represent
the number of states of a given type, state offsets double their size, which

64 Back-End & Runtime

5

1

1

13 12

7

2

10

2

11

6

8

3

9

3

6

4

5

7

5 6 7

3

4

4

8

1

5

3

9

2 −∞

4∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞2

10

6

11 12 13

7

or-states

and-states

Figure 4.7: Array encoding of the tree on the right side of Fig. 4.6

would immediately affect the size of identifiers and hence all arrays. To
defer this undesirable effect an intermediate dictionary (an array of offsets)
is created in such case and states are addressed by an extra indirection at
runtime. It can be shown that the space cost of dictionary is always smaller
than the saving on the array size in such case. The decision whether this is
needed, the actual generation of the indirection, and the assignment of fixed
sized integer types to data, are the main tasks of the static data manager.
Before that point all the analysis and generation uses large types internally
for integer data and symbolic references for addressing.

Ancestorship queries are the most important operations on the hierar-
chy tree: they are performed whenever a state activity is checked. This
happens when selecting transitions to fire and when selecting routes of ac-
tivation for cross-level transitions or transitions targeting non-basic states.
The visualSTATE statecharts require even more activity checks than UML
state diagrams, since synchronization by states (using guards) is much more
natural for them than synchronization by signals. A trivial implementation
of hierarchical ancestorship check demands traversing the path between two
states:

Trivial-Active-And(s : Stateand)

for s′ ∈ prev -conf

do if Ancestor(s, s′)
then return 1

return 0

Ancestor(s : State, s′ : State)

if s′ = nil
then return 0
else return s = s′ ∨Ancestor(s, parent(s′))

Unfortunately the most expensive case, when ancestorship does not hold,
seems to be the most common one. To diminish the problem we propose a
simple labeling scheme supporting checks based only on state labels.

4.2 Hierarchical Back-End and Runtime 65

Assume that and-states are numbered in a depth-first-search order (more
precisely a postorder with left-to-right visiting of children). The identifier
assigned to a given state s is greater than the identifier assigned to any of its
descendants and all of them are greater than the identifier assigned to the
leftmost descendant of s (see Fig. 4.6, left). For each and-state an interval
of ancestorship identifiers can be computed. Then the left end-point of the
interval (the left most descendant, or the LMD) needs to be saved for each
and-state. The right end-point of the interval is the state identifier, which
is always known when reaching the state. As such it does not need to be
saved separately.

Active-And-SE(s : Stateand)

for s′ ∈ prev -conf

do if s′ ≥ LMD [s] ∧ s′ ≤ s
then return 1

return 0

The labeling can be exploited even further to eliminate some record
markers from the structure. Recall that and-states and or-states have sepa-
rate name spaces, which means that they can be labeled in different ways.
Note that the interval labeling of and-states does not necessarily demand for
state identifiers to be consecutive numbers. Recall also that state identifiers
are used as state pointers, which means that states are arranged in the same
order in the arrays in which they are visited by the labeling algorithm.

It can be shown that if or-states are labeled in order dual to the one pre-
sented for and-states (DFS, preorder, with right to left visiting of children)
both arrays exhibit an interesting property. Children lists in the or-state ar-
ray form strictly increasing sequences of values, while sequences of children
on lists in the and-state array are strictly decreasing (see Fig. 4.6, right).
Moreover the monotonicity is always broken between lists of children of
two neighboring states. This information can be used to distinguish record
boundaries and instead of the # marks. Only if the state contains more at-
tributes than just a children list, they are saved in front of the state record
preceded by a mark: negative infinity for the array of and-states and positive
infinity for array of or-states. A guarding mark should also be appended in
the end of the arrays, and for basic states.

Figure 4.7 shows a representation of the tree shown on the right of
Fig. 4.6. Additional fields have been suppressed and consecutive numbers
instead of actual offsets were used to increase readability. The saving is
especially visible in the or-states array, which by definition does not contain
any leaves, and for deeper models with many internal nodes.

66 Back-End & Runtime

4.2.2 State Configuration Encoding

I have experimented with two simple state encoding techniques: a set-based
encoding and a flag-based encoding—a variant of classical 1-hot state assign-
ment adopted for software implementation of statecharts. The set encoding
is more compact, while the flag encoding yields faster programs. The set en-
coding relies heavily on optimized ancestor queries described in the previous
section. The performance of encodings is compared in section 4.2.4.

Set-Based Encoding

The set-based encoding maintains only a set of active basic states, as op-
posed to maintaining activity flags for all and-states. This is information is
sufficient to solve activity queries for all states.

We use static buffers, rather than dynamic data structures to represent
sets and queues. The set of active states is a simple buffer of elements with
empty cells in the end. The lack of gaps between elements is important
as we shall see that efficiency of state activity tests depends on the actual
number of elements filled in.

The implementation does not prevent overflows. To guarantee safety, a
bound on configuration size must be found statically. The exact maximum
size of the configuration can be computed using reachability analysis. For
fast compilations a cheaper estimation is needed. A simple recursive algo-
rithm is used to give an upper bound of the configuration size. The bound
for each basic and-state is assumed to be 1. The bound for each or-state is
the maximum of bounds for its children. The bound for each and-state is
the sum of children’s bounds. Although very simple, this algorithm gives a
good improvement over the trivial bound—the number of all basic states.
Moreover the estimation is exact for purely sequential or entirely flat models:

Configuration-Bound(s)

if Basic(s)
then return 1

elseif And-State(s)
then return

∑

s′∈children(s)Configuration-Bound(s
′)

� s is an or-state
return maxs′∈children(s)Configuration-Bound(s′)

Interval labeling and set-based encoding can also be used for optimizing
some of the state exit operations. Observe that whenever a transition is fired
all states within its scope should be exited and then new states should be
activated. Standard exit procedure starts from active leaves of the respective
subtree and proceeds towards the top executing all exit actions on the way.

4.2 Hierarchical Back-End and Runtime 67

Exit-And(s)

if children(s) 6= ∅
then for s′ ∈ children(s)

do Exit-Or(s′)
call exit(s)
next -conf ← next -conf \{s}

Exit-Or(s)

for s′ ∈ next -conf

do for s′′ ∈ children(s)
do if LMD(s′′) ≤ s′ ≤ s′′

then Exit-Or(s′′)
return

This can be improved for some states. An or-state (a transition scope) is
said to be exit-pure if none of its descendants has any exit actions assigned.
For such state another exit algorithm may be proposed. Instead of traversing
the subtree and executing empty exit actions, one can scan the set of active
states and simply delete all states between the end-points of the interval
corresponding to the subtree.

Exit-Pure-Or-SE(s)

for s′ ∈ next -conf

do if LMD(s) ≤ s′ ≤ s
then next -conf ← next -conf \{s′}

return

Flag-Based Encoding

An alternative encoding for statechart configuration would preserve the in-
formation about all states, not only the basic states. The idea is to store
identifier of active child for each or-state, or a distinct value if the state is
inactive itself. This way activity checks become very efficient (and constant
time) at the cost of updating the information for more states, whenever a
transition fires. Also more writable memory is needed.

Hardware implementations of similar encodings [31] use dlog ne bits for
each or-state, where n is the number of its children. Access to subparts of
machine word is relatively inefficient, when it comes to software implemen-
tations. A vector of cells with fixed size is used instead in SCOPE. The cell
size should be sufficiently big to store the information for or-state node with
the highest out-degree.

68 Back-End & Runtime

Executable Size [bytes]

Model

st
at
es

tr
an
s.

d
ep
th

VS SC-SE ra
ti
o

SC-FE ra
ti
o

ra
m

actions01 4 1 3 3596 3752 1.04 3704 1.03 0

drusinsky89 19 14 7 3976 4192 1.05 4144 1.04 4

lift 18 19 3 4452 4432 1.00 4372 0.98 0

peer 275 192 23 12644 10352 0.82 10536 0.83 56

trios01 1121 840 9 28164 19848 0.70 24108 0.86 271

trios03 1121 840 9 60196 22048 0.37 24684 0.41 271

Table 4.1: Size results: IAR visualSTATE 4.3 vs SCOPE 0.11

Execution Time [s]

Model

st
at
es

tr
an
s.

d
ep
th

VS SC-SE ra
ti
o

SC-FE ra
ti
o

actions01 4 1 3 7.61 6.27 0.82 6.02 0.79

drusinsky89 19 14 7 9.64 7.67 0.80 7.99 0.83

lift 18 19 3 15.66 30.33 1.94 21.30 1.36

peer 275 192 23 20.66 31.81 1.54 26.31 1.27

trios01 1121 840 9 541 730 1.35 255 0.47

trios03 1121 840 9 1139 751 0.66 260 0.23

Table 4.2: Speed results: IAR visualSTATE 4.3 vs SCOPE 0.11

4.2.3 Transitions

Another simple, but practically successful, optimization is the introduction
of several target types called modes. Most importantly we distinguish flat
and non-flat targets of transitions. Informally a target is flat if an arrow
drawn to it from the transition source does not cross any statechart levels:
it remains within the same or-state. Nonflat targets need to be decorated
by scopes as described previously. However, the computation of scope for
flat targets is very cheap and can be done by looking up the parent of the
source state in the hierarchy tree. Thus scope information does not need to
be saved for majority of transitions, bringing yet another space saving.

4.2.4 Evaluation

Let n be the number of all states in the model and t the number of tran-
sitions. The hierarchy tree and the transition table can be implemented in
O(n) and O(t) space respectively. The only point where the linearity can

4.2 Hierarchical Back-End and Runtime 69

be broken is the removal of dynamic scopes, which occasionally multiplies
transitions. A transition can be multiplied at most O(dm) times, where d
stands for depth of the tree and m is the maximum over number of targets
on a single transition. Fortunately this term can be considered constant and
is small in real models. The number of possible scopes is usually at most
two or three. Also it is typical to have at most one dynamically scoped
target on a transition while statically scoped targets do not cause any mul-
tiplication. Finally it is extremely uncommon to actually meet dynamically
scoped transitions in real life models.
The elimination of end-of-state markers brings a constant saving of space

in representation of the hierarchy. So does elimination of field indicators for
commonly used elements (for instance initial states).
A single activity test in the set-based encoding costs O(dn) time. SCOPE

reduces this to O(n) using descendants interval labeling. In practice n be-
comes the number of active basic states, which is much less than number of
basic states. Flag-based encoding enjoys the constant time cost of a single
activity test, while increasing the use of writable memory and administra-
tive cost of firing. Still it seems that much more transitions are queried than
fired at a single microstep, so the flag-based encoding is faster.
Experiments have been carried out both with SCOPE and IAR visual-

STATE. Generated programs have been compiled with GCC 3.2 optimizing
for size, on an x86 PC running Linux. Sizes are bare executables in bytes.
Only the control algorithm and the runtime library were linked in. All refer-
ences to external functions have been substituted with dummies. Running
times are given in seconds, measured by triggering 107 random events, reini-
tializing the state machine before each event with probability of 0.01. The
measuring was performed on a 450 MHz Pentium II.
Tables 4.1, 4.2 present selected results. The states column contains the

total number of states (both and-states and or-states), trans shows the to-
tal number of transitions (excluding initial transitions), while depth gives
the depth of hierarchy tree (counting both and-states and or-states). The
minimal depth is 3, which is observed for flat models. VS denotes visual-
STATE, SC-SE denotes SCOPE in state-based encoding mode, SC-FE de-
notes SCOPE using the flag-based encoding. Ratios are computed with
respect to the visualSTATE measurements. The ram column presents the
size of writable memory consumed additionally by the flag-based encoding
comparing to the set-based encoding.
Similar experiments have been carried out using a nonoptimizing com-

piler (LCC for Linux) and optimizing embedded systems compilers from
IAR Systems. The results were comparable; the only part of the program,
that can be optimized by a C compiler is the runtime library. IAR compil-
ers for PIC and AVR platforms shown that the visualSTATE’s and SCOPE’s
runtime libraries differ by about 5% in size. Static integer tables encoding
model data are beyond the scope of ordinary compiler optimizations and

70 Back-End & Runtime

thus they remain the same from platform to platform. I have reported GCC
results since this is the most widely accessible reference platform.
Actions01 is a trivial example containing two basic states connected by

a single transition. The size differences reflect the sizes of runtime engines.
The hierarchical library seems to be only slightly bigger. The version of
the library using flag-based encoding is smaller than the one for set-based
encoding as the logics involved is much simpler.
Two other examples, Drusinsky89 [29] and lift, show that the size of

code produced by SCOPE is comparable to that of IAR IAR visualSTATE for
small models. The difference seems to be acceptable. The latter of the two,
lift, is a flat statechart (a set of concurrent state machines). It demonstrates
the performance strength of flattening approach used in visualSTATE on flat
models. The interpreter for the flat structure is very efficient. What slows
it down is the growth of the structure itself, which is not observed for flat
models.
A typical medium size model with irregular structure is represented by

peer. The last two models, trios01 and trios03, are highly concurrent and
uniformly deep (the whole structure is equally deep). The latter one uses
deep history on top level. Such models exhibit the size explosion problem
of the flattening algorithm implemented in visualSTATE.
We should stress that the ratios presented in the tables above, computed

for complete statically linked executables are slightly inexact. The model
independent start-up and helper code generated by gcc, takes roughly 1kb
in both cases distorting the output by roughly 1% in the model of size
comparable with peer.
The overall result is that hierarchical generation technique seems to be

feasible for small models, and scales well to large ones. Also if the cost
incurred on writable memory is acceptable in a given application, the flag-
based encoding should be used as this brings efficiency gains over the set-
based approach. Nevertheless, as we shall see soon, the novel flattening
algorithm proposed in this thesis, yields even more efficient code in general.

4.3 Flat Runtime

The main disadvantage of the hierarchical runtime is the size of the hierarchy
tree representation and the complexity of operations (hierarchical activity
checks and entering/exiting with tree traversals). It increases the writable
memory consumption at runtime and makes it difficult for generic tools
to automatically estimate the actual memory used and response times. The
depth of recursive calls depends on the structure of the model, which in turn
is encoded as data in integer arrays—an extremely hard case for automatic
analysis.

4.3 Flat Runtime 71

F G

e2 [¬E] /

e2 / B

D E

C
A

e1 [F] / 〈a〉

Figure 4.8: An example of a flat statechart

At the same time flat, concurrent communicating state machines, enjoy
a very simple and efficient semantics. In this section we briefly present the
runtime, which uses flat state machines as the model representation. In the
following section we discuss problems involved in translating the original
statechart model into this flat representation.

4.3.1 Flat Statecharts

A Mealy machine [90] is a finite state machine with transitions between
states and sequences of atomic actions executed when a transition is fired.
Each transition is labeled by a triggering event and a guard condition. A flat
statechart (see figure 4.8) is a set of Mealy machines, operating concurrently
in synchronous steps. The machines communicate by synchronization on
active states.

Formally a flat statechart is a restriction of a hierarchical statechart.
Flat statechart has a trivial hierarchy tree comprising four levels: (1) a root,
(2) a single and-state, which contains (3) Mealy machines in or-states and
(4) the basic states. Moreover exit and entry actions are not allowed: the ex
function is a constant, always returning an empty sequence of outputs and
the ↘ relation forms a shallow tree: all and-states are basic states, except
for the root.

Transitions are guarded by conditions on basic states and can only target
basic states. The semantics of firing follows the individual scope scheme of
the hierarchical semantics (section 2.2.6). It can be shown that in a flat
statechart each target has an individual scope and all the scopes are flat
(parents of the target state). Transitions never cause the exit of the root
state. For example the transition sourced in the D state on Fig. 4.8, would
cause a conflict under collective scopes semantics (UML, see p. 27): because
it exits A and attempts to activate both D and E. In the flat (individual
scopes) semantics it only activates G and E.

It can be shown that the individual scope’s semantics and the require-
ment that transitions do not target the top most and-state, imply that the
use of history is insignificant. States are never entered via history in such a
setup. For this reason we also require the the history map his is empty. In
fact in flat statecharts all states behave like history states—they never loose
information on what state was active most recently.

72 Back-End & Runtime

F

B

DEG

CB Canatomy

Figure 4.9: Anatomy of the flat statecharts of Fig. 4.8. As in the hierarchical
back-end integers are used instead of state names. or-states and and-states
enjoy separate namespaces.

Definition 4.1. A statechart S = (ΓE,ΓF ,ΓV ,Signal,VarE ,VarI ,State,
↘, ini, his, ex, en,Trans) is called a flat statechart if:

1. ∃!s ∈ Stateand. root↘ s ∧ ∀s′ ∈ Stateand. s′ 6= s⇒ parent2(s′) = s

2. ∀s ∈ Stateand.ex(s) = en(s) = 〈〉

3. ∀t ∈ Trans. ∀σ ∈ Σ. ∀s ∈ scope(t, σ). parent2(s) = root

4. dom(his) = ∅

We should stress that we have only defined flat statecharts as a restriction
of hierarchical statecharts in order to avoid introduction of new language and
its semantics. It is still worth to perceive flat statecharts intuitively as col-
lections of synchronizing Mealy machines, because of their simple execution
mechanism.

4.3.2 Implementation Details

The dynamic semantics of flat statecharts is an easily implementable subset
of the hierarchical semantics. The hierarchy tree can be replaced by a simple
map from state identifiers to state machines, which we shall call an anatomy
of the flat statechart, to emphasize that this is not a fully fledged tree. If s
is an and-state, then anatomy[s] = parent(s). Fig. 4.9 presents the anatomy
of the flat statechart of Fig. 4.8.
State configurations are maps from state machines (or-states) to active

and-states, very much like in the flag-based encoding of the hierarchical
back-end. The activity test for and-states is constant time:

Active-And-Flat(s)

return prev -conf [anatomy [s]] = s

Finally, since all transitions are flat, they all have static scopes. This,
together with lack of entry and exit actions, makes the entering process very
simple:

Enter-And-Flat(s)

next -conf [anatomy[s]]← s
return

4.4 Lower Bound for Flattening 73

The flat interpreter consists of three main functions Microstep,
Macrostep and Fire as before. But the basic blocks used by Fire are
much simpler. Exiting states can simply be ignored. There is no exit actions
and entry automatically performs exit via assignment in the state vector.
Entering is constant time as we have seen above, and requires no recursive
traversals. Consequently flat statecharts can be implemented using a simpler
runtime system and less mutable data structures, which results in reduced
consumption of writable memory. Our flat interpreter uses tiny amounts
of writable memory: an order of ten integers plus the size of the current
configuration vector and a very shallow bounded call stack—a significant
advantage over the hierarchical version.

4.4 Lower Bound for Flattening

In the previous section we have appreciated the simplicity of our implemen-
tation of flat statecharts. In order to exploit this simplicity, one needs a
translation algorithm from hierarchical statecharts to flat statecharts. We
call this transformation flattening. Flattening is widely applied to hierar-
chical models both in theoretical and practical settings. It has been used to
give the semantics of hierarchical languages [45] and to provide algorithms
for code generation [57], automatic testing [12], and model checking [26].
Not only flat models can be easily interpreted with very limited writable
memory usage, but they are also easier to analyze for worst-case execution
time. Flat models can be more easily translated to hardware circuits. This
makes flattening specifically attractive for code generation targeting con-
straint embedded systems. In the following sections we should study the
transformation of flattening from two angles. First, a formal statement of
lower-bound on model size increase shall be given. Then we shall relax
the problem definition, to the point, where an efficient algorithm can be
proposed. We describe its implementation and evaluate it.

Literature mentions a multitude of meanings for flattening and related
concepts. Let me stress that the meaning given above is different from
generation of a single product machine for all concurrent components. Our
understanding of hierarchy, concurrency and flattening is rather similar to
that of [3, 5, 119, 26] and substantially different than that of [16, 113, 118].

We should use a relativized bisimulation as a correctness criterion. The
flattening algorithm, which we will ultimately propose, relies on the fact that
the environment does not distinguish equivalent interleavings of concurrent
activities in the statechart.

Definition 4.2. Statechart S1 simulates statechart S2, written S1 6 S2,
if each macrosteps of S1 can be mimicked by a macrosteps S2 and both
macrosteps advance models to state configurations where they still simulate

74 Back-End & Runtime

each other:2

whenever 〈σ1, %1, η1〉
e os !
−−−−→〈σ′1, %

′
1, η

′
1〉

then also exist σ′2, %
′
2 and η

′
2 such that 〈σ2, %2, η2〉

e os !
−−−−→〈σ′2, %

′
2, η

′
2〉

and the same property holds for primed global states.

Definition 4.3 (Flattening). Let F be an algorithm translating hierar-
chical statecharts to flat statecharts. F is a flattening algorithm if for any
hierarchical statechart S it yields a flat statechart S ′ such that S ′ 6 S.

Note that the simulation requirement is not trivial for input-enabled
systems. In particular an algorithm always returning an empty statechart
containing just the root state is not a flattening algorithm, because traces of
the empty statechart contain empty outputs and us such are not legal traces
of any nonempty statechart producing outputs.

The following theorem states a lower bound for the flattening problem:
flattening cannot be achieved in polynomial space if the target statecharts is
restricted only to communication via guards and communication via signals
is disallowed.

Theorem 4.4. There exists a hierarchical statechart S not using signals,
such that for any flat statechart S ′ such that S ′ does not use signals and
S ′ 6 S:

1. The size of S ′ is in Ω(2
√
s), where s is the size of S.

2. Previous claim holds even if S is restricted to binary inputs and out-
puts.

3. The lower bound with growth rate arbitrarily close to the exponential,
can be constructed by choosing S with sufficient amount of concur-
rency.

Note that the second claim of the above theorem is stronger than the
initial one. It says that the lower bound holds even for a subset of hier-
archical statecharts over binary alphabet (decreasing the set from which S
can be chosen). So the first claim is a special case of the second claim. The
third claim is even stronger saying that the lower bound can be increased
arbitrary close to the exponential function. We will show how to construct
S so that the degree of the root in the exponent approaches one, as the
amount of concurrency in S increases.

2A formal definition based on fixpoint theory will be given in chapter 5.

4.4 Lower Bound for Flattening 75

Figure 4.10: (2,3)-model of and-depth 3, also a (2,3)-model of 58 states

4.4.1 Proof

The proof proceeds by identifying an infinite family of (α, β)-models such that each
of the members in the family has a superpolynomial reachable state space and
each state configuration yields a different sequence of exit outputs. Such sequences
cannot be represented in any flat model without equivalent multiplication of tran-
sitions. Finally we show that the family of (α, β)-models contains statecharts for
which hardness of flattening problem is arbitrary close to an exponential of model
size.
In the proof we shall use the following auxiliary notions. The out-degree of a

state is the number of its children (i.e. the out-degree of the node in the hierarchy
tree). The depth of the model, denoted d, is the number of states in the longest
path in the hierarchy tree leading from root to a leaf. All models always have even
depth (as the root is an or-state and so are all leaves). A variant of depth—called

and-depth, denoted d̂, only reflects number of and-states in the paths: d̂ = d
2 . All

flat statecharts have depth d = 4 and d̂ = 2.
We will denote the number of all states in the model by n = |State|. Finally the

size of the model is defined as the size of all its guards, actions output sequences
and the number of states.

Family of (α, β)-models

Consider a family of statecharts with fixed out-degree α ≥ 2 for nonbasic and-states
and fixed out-degree β ≥ 2 for not-root or-states. Each and-state has a unique exit
action assigned. For each and-state in the model there is a transition sourced in that
state. Each transition has a unique event triggering it. The targets of transitions
are selected in such a way that there is a cycle over and-states in any particular
state machine at any level. Note that this way every statically legal configuration
in the statechart is reachable.

76 Back-End & Runtime

β β

α

β β

α

β β

α

β

β β

α

β β

α

β β

α

β

α

root

Figure 4.11: Hierarchy tree of (2,3)-model of figure 4.10

We will indicate a specific model in the family by giving its parameters and
size, calling it an (α, β)-model of and-depth d̂ or an (α, β)-model of n states. In the
latter case n has to be consistent with α and β. Figure 4.10 presents a (2,3)-model
of and-depth 3.
Note that the size of any model depends on size of actions and guards, the

number of transitions and number of states. The number of actions and transitions
in a given (α, β)-model is the same as the number of states. Thus, from now on,
we will use the number of state n as a measure over (α, β)-models instead of the
more general size s.

Reachable State Space

Let width
k̂
denote the number of states on and-depth k̂ (i.e. on k̂th level of and-

states) in an (α, β)-model:

width
(α,β)

k̂
= (αβ)k̂−1 (4.1)

In particular width
d̂
denotes the number of basic states in a given (α, β)-model.

The number of active states of an (α, β)-model at and-depth k̂ is given by:

active
(α,β)

k̂
= αk̂−1 (4.2)

The total number of states as a function of and-depth can be described with the
following recurrence:

n
(α,β)
1 = 2

n
(α,β)

d̂
= n

(α,β)

d̂−1
+ width

(α,β)

d̂−1
· (α+ αβ). (4.3)

The recurrence, solved and inverted, gives the and-depth of the model as a function
of the number of states n:

d̂(α,β) = logαβ

[

β

β + 1
(n− 1)(αβ − 1) +

β(α + 1)

β + 1

]

(4.4)

for legal combinations of values of α, β and n. Formula (4.4) gives a translation
from functions over and-depth to functions over model size.

4.4 Lower Bound for Flattening 77

Recall that all statically legal configurations are reachable in (α, β)-models, so

the number of reachable states in a model of depth k̂ given by R
(α,β)

k̂
, is equal to

the number of possibilities in which active sets of states can be selected according
to semantics of statecharts.

R
(α,β)
1 = 1 (4.5)

R
(α,β)

k̂
=

R
(α,β)

k̂−1
∑

i=1

(βα)active(k̂−1) (4.6)

The term under summation is independent of sum index, because of the high regu-
larity of the model. Each configuration at level k̂ − 1 can be refined to exactly the
same number of configurations on level k̂. Thus the recurrence simplifies to:

R
(α,β)
1 = 1 (4.7)

R
(α,β)

k̂
= R

(α,β)

k̂−1
β αactive(k̂−1), (4.8)

which can be solved giving:

R
(α,β)

d̂
= β

αd̂
−α

α−1 (4.9)

This shows that the size of the reachable state space is double exponential in the
depth of the (α, β)-model. Substitute (4.4) to obtain the size of reachable state
space as a function of model size:

R(α,β)
n = β

[β
β+1

(n−1)(αβ−1)+
β(α+1)

β+1]
logαβ α

−α

α−1 , (4.10)

for any fixed choice of α and β. The R
(α,β)
n function is Ω(2n

logαβ α

). Moreover if

α = β then R
(α,α)
n ∈ Ω(2

√
n). The size of reachable state space for (α, β)-models is

double exponential in the model depth, but superpolynomial and subexponential
in the model size.

Succinctness

Let us deal with the unlimited alphabet case first, when arbitrary many
input and output symbols are allowed in our statecharts. We shall see that
(α, β)-models cannot be translated to flat statecharts without superpoly-
nomial growth of size. Consider the top level loop transition in any of
(α, β)-models. This transition may be enabled in any reachable configura-
tion. Each configuration yields a unique exit output (one of possible in-
terleavings) as each state has a unique exit action assigned. Thus the top

transition may produce R
(α,β)

d̂
distinguishable outputs. When flattening this

transition, R
(α,β)

d̂
output reactions need to be expressed. As many other se-

quences are illegal, the only way to guarantee a sequence of actions to be
generated in the flat models in a fixed order is to place outputs on the same
transition. Otherwise, if the parts were split across various transitions, no
guarantee can be given in which order outputs will be generated. Thus at
least as many transitions as reachable state configurations are needed in this
cases. Take α = β and the first claim of theorem 4.6 is reached.

78 Back-End & Runtime

init e1 e2 er

[0]/ [0]/ [0]/

[1]/ [1]/ [1]/

Figure 4.12: An extra component decoding the binary input

Input-Output Alphabet

In order to prove the second claim of theorem 4.6, namely that the same
lower bound holds for binary input output alphabets, it suffices to show a
polynomial translation of statecharts over arbitrary alphabet to statechart
over binary alphabet. The translation should preserve the semantics of orig-
inal statechart allowing triggering non binary events by encoding in binary
sequences and similar observation of non-binary effects with distinguishable
binary words.

Input encoding. We assume a finite number of events in input alphabet,
indexed from 1 to r. We will use i + 1 bits to encode the firing of event
ei. First i zero symbols are sent, followed by a single one symbol. The
translated model continues to receive zero symbols, advancing the counter
of arriving event, and fires relevant transitions, when one arrives. A fresh
component, illustrated on figure 4.12, is added to the model being translated
by means of concurrent composition.

Then the triggering event on every transition in the old model is changed
to 1. If the original transition was fired by event ei then an extra term is
conjuncted to transition’s guard enforcing that state ei is active. A transition
s1 ei [g]/os

−−−−−−−→s2 becomes s1 1 [g ∧ ei]/os
−−−−−−−−−−→s2. The size of each transition has been

increased by a constant factor.

The resulting model operates over binary input symbols, still presenting
the same behavior and properties, modulo encoding. Moreover the size of
the new model is linear in the number of transitions in the original model.
In the worst case as many new states and new transitions have been added
as there were transitions in the original model (if each transition was fired
by unique event).

Output encoding. The translation from models over arbitrary output
alphabet to models over binary output alphabet is even easier. It suffices
to use any isomorphic encoding of natural numbers in binary alphabet and
instead of every output generate a corresponding sequence of binary outputs.

The above encodings are generally useful whenever complexity proofs
for statecharts need to be generalized to models over binary alphabets.
In our case we notice that (α, β)-models can be translated within poly-
nomial bounds to a corresponding family over binary alphabets. The whole
proof can be rephrased in this framework – the properties of models are not
changed. All configurations are reachable and each configuration gives rise

4.5 Polynomial Flattening 79

to a unique set of exit sequences. One still obtains the same superpolynomial
order of growth, which finishes the proof of the second claim of theorem 4.6.

Improving the Lower Bound

Let us return to the lower bound on the number of configurations

Ω(2n
logαβ α

). Note that the innermost exponent in the lower bound function
is a constant from the interval (0; 1). Moreover if one extends the amount of
concurrency in the model (controlled by α), keeping the amount of sequen-
tiality (controlled by β) constant, the exponent approaches 1. Thus one can
give a lower bound of the size being arbitrarily close to exponential in the
sense of growth rate.

This shows the third claim of theorem 4.6. It is harder to flatten more
concurrent models, despite the fact that concurrency is preserved by flat-
tening. Hierarchy is strengthened by concurrency.
The proof naturally suggests an algorithm of the same asymptotic com-

plexity for flattening of statecharts. Thus for our (α, β)-models, which are
a kind of regular statecharts (they have regular tree structure) the bound
given is tight:

Observation 4.5. Any (α, β)-model of n states can be flattened to a state-

chart with size in Θ(2n
logαβ α

).

This also means that for regular statecharts in this sense an exponential
limit on the lower bound cannot possibly be reached (which does not mean
that the bound is tight for statecharts in general).

4.5 Polynomial Flattening

As we have seen in the previous section it is impossible to flatten hierarchi-
cal statecharts efficiently without using signals. We shall now demonstrate
how signals and signal queue become instrumental in designing an efficient
flattening algorithm. This result is relatively surprising as it contradicts a
widely held but informal belief that a polynomial solution for this problem
does not exist. At the same time experiments show that the quality of re-
sulting code exceeds the quality of programs synthesized by the hierarchical
code generator described in section 4.2.

Theorem 4.6. For any hierarchical statechart S there exists a flat statechart
S ′ such that S ′ 6 S and the size of S ′ is at most polynomial in the size
of S.

In fact this result holds even if the set of internal signals of S ′ is restricted
to two distinctive values (note that this is a restriction on the target, not
the source language, which would be trivial). This can be concluded using

80 Back-End & Runtime

binary encoding techniques presented in the previous section and shall not
be discussed further here.
We shall present the flattening algorithm in a declarative style, as a

syntax-driven transformation of statechart elements. Consider a hierarchi-
cal statechart: S = (ΓE ,ΓF ,ΓV ,Signal,VarE ,VarI ,State,↘, ini, his, ex, en,
Trans). We show how to construct a flat statechart S ′ = (ΓE ,ΓF ,ΓV ,
Signal′,VarE,VarI ,State′,↘′, ini′, his′, ex′, en′,Trans) such that S ′ 6 S.
Observe that the environment events of S ′ are the same as events of S.

The maps ex′, en′ and his′ are empty. The interface to functions ΓF , variable
sets VarI , VarE and types ΓV remain unchanged. In fact the entire part of
each model not directly related to hierarchy will remain unmodified in the
flat model. Thus in the description of the algorithm below, we occasionally
take the freedom to ignore presence of variables and expressions in conditions
and actions of transitions. It is straightforward to incorporate them though.

4.5.1 The Algorithm

The or-states of S ′ are mostly identical with the or-states of S. We add two
additional states: Ior used to implement administrative internal rules, and
rootor, which will be the new top level state.

State′or = Stateor ∪ {rootor, Ior} (4.11)

The set of and-states is extended by an administrative state Iand and a top
level and-state rootand (the only child of rootor):

State′
and

= Stateand ∪ {rootand, Iand} (4.12)

The new substate relation↘′ is a sliced version of the old one. Relationships
between or-states and and-states are kept, but all the or-states get a common
parent rootand, which is a direct descendant of rootor:

Ior↘
′ Iand ∧ rootor↘′ rootand ∧ ∀s ∈ Stateand. parent(s)↘′ s (4.13)

rootand↘
′ Ior ∧ ∀s ∈ Stateor. rootand↘′ s , (4.14)

where parent is defined based on the substate relation ↘ of S. The new hi-
erarchy tree (anatomy) created by flattening the tree of Fig. 2.1 is presented
on Fig. 4.13.
The new initial marking ini′ is obtained by extending the original mark-

ing with extraneous states Iand and rootand—both the only, hence trivially
initial, states in their state machines:

ini′(s) : State′or → State
′
and =

ini(s) if s ∈ Stateor

rootand if s = rootor

Iand if s = Ior

(4.15)

Clearly the size of State′ = State′or ∪ State
′
and
is linear in the size of the

original State set Θ(|State|).

4.5 Polynomial Flattening 81

root

A B C1

A′

C2 D1 D2

D E

E1 D11 D12

D′
1

E11 E12

E′
1

C12C11

C′
1

rootor

rootand

Ior

Iand

Figure 4.13: The anatomy resulting after flattening the tree of Fig. 2.1

Guards

Guards are flattened by computing ancestor closures over states of S, so
that invariants of the hierarchical configurations are enforced on the flat
configurations as well, but this time at the transition level.

flat(g) =

true if g = true

¬flat(g1) if g = ¬g1

flat(g1) ∧ flat(g2) if g = g1 ∧ g2
∧

p∈P
p

if g = s, s ∈ Stateand

and P = ancest∗(s) \ Stateor ,

(4.16)

where ancest∗is defined based on substate relation ↘ of S. For example the
guard D1 ∧ D12 ∧ ¬E11 is flattened to:

flat(D1 ∧ D12 ∧ ¬E11) = D12 ∧ D1 ∧ B ∧ ¬(E11 ∧ E1 ∧ B) (4.17)

At this point the guards are suitable for placing in statecharts with un-
restricted guard syntax, for example UML. In visualSTATE the syntax of
guards is limited (see grammar at 2.18). It does not allow negation of arbi-
trary expressions, but just for literals. For this reason the result of flattening
needs to be expanded usign distributive laws to a DNF formula:

(D12 ∧D1 ∧B∧¬E11) ∨ (D12 ∧D1 ∧B∧¬E1) ∨ (D12 ∧D1 ∧B∧¬B) (4.18)

Unsatisfiable clauses are removed in practice (see the last one above) and
then the transition gets multiplied, with each conjunctive clause being a
guard on one copy. This expansion gives a potentially exponential growth
of the number of transitions in the number of negations in the original
guard. As we shall see later, this exponential growth does not affect the
performance of the algorithm in practice. Transition guards are typically
short and do not contain many negations. One can safely assume that the
number of negated references does not exceed five in realistic models. So in
practice the number of transitions only grows polynomially and each of the
transitions is only polynomially bigger than originally.

82 Back-End & Runtime

Action Transitions

Entry and exit actions are not available in the flat target language. We shall
implement them by generating an action transition for each of them. For
each and-state s, define the following transitions:

texs = Iand
eexs [flat(s)]/ex(s)
−−−−−−−−−−−−−−→Iand tens = Iand

eens [flat(parent2(s))]/en(s)
−−−−−−−−−−−−−−−−−−−−−→s, (4.19)

where eexs and e
en
s denote fresh signals not belonging to Event ∪ Signal ∪

Action. These signals may now be used to trigger entry and exit actions.
Note that the exit transition will fire if s is active, while the entry transition
only activates s if the nearest and-state ancestor is active, so that the invari-
ant for state configurations is preserved. The action transitions for state C1

of Fig. 2.1 are:

Iand
eex
C1
[C1 ∧ A]/release()

−−−−−−−−−−−−−−−−−−→Iand and Iand
een
C1
[A]/reserve()

−−−−−−−−−−−−−−→C1 . (4.20)

Similarly an action transition is generated for each hierarchical transition t:

tt = Iand et [true]/ost
−−−−−−−−−−→Iand , (4.21)

where et is a fresh signal. This signal may now be used to trigger the action
of the original hierarchical transition. An action transition corresponding to
transition t1 in Fig.2.1 is:

Iand
et1 [true]/〈o1, s1〉
−−−−−−−−−−−−−−→Iand . (4.22)

Later on we shall schedule action transitions in the proper sequences to
implement traces of original statechart. Note that so far we have added a
number of transitions linear in the number of states and transitions in the
original model.

Interface

The input and output alphabets cannot be changed, otherwise the flat stat-
echart would violate the implementation condition trivially. The set of in-
ternal signals is extended with the administrative signals mentioned before
plus a new one for each history state:

Signal′ = Signal ∪ {eens |s ∈ Stateand} ∪ {e
ex
s |s ∈ Stateand}

∪ {et|t ∈ Trans} ∪ {e
h
s |s is a history state} . (4.23)

The size of Signal′ is linear in the size of the original model.

4.5 Polynomial Flattening 83

HH

C11 C12

C′
1

C1

A′

A

D11 D12

D′
1

D1 D2C2

E11 E12

E′
1

E1

D E

B

root

C11 C12

C′
1

C1

A′

A

D11 D12

D′
1

D1 D2C2

E11 E12

E′
1

E1

D E

B

root

C11 C12

C′
1

C1

A′

A

D11 D12

D′
1

D1 D2C2

E11 E12

E′
1

E1

E

B

root

Figure 4.14: Entry schedules for t1 (left), t2 (middle) and t3 (right). The
path of t1 is static, t2 relies on dynamic history choice, and t3 circumvents
history with explicit guiding targets.

Entry Schedule

Firing a hierarchical transitions has three phases: exit the scope, execute
actions, and enter the scope. We realize the entering and exiting phases by
generating signal schedules. Schedules are sequences of administrative sig-
nals, which when interpreted by a microstep iteration realize the semantics
of the original hierarchical transition.

An entry schedule has two parts: a statically computable part and a
dynamic, history-dependent, part. The static part can be determined at
compile time by computing a closure of the ini function guided by the set of
explicit targets. The computation of the schedule continues until a history
state is reached (see Fig. 4.14), where it forks to account for all variants in
which entering may proceed from that state. The variants are guarded on
the last value of history, so that only one will execute at each firing.

Two mutually recursive functions Entry-Or and Entry-And realize
the hierarchy traversal guided by the set of goal states ts. They stop at a
history state or a basic state. They generate signals firing the entry tran-
sitions of respective states and a history transition if needed. The history
state can only be bypassed if the targets below it are explicitly specified (see
the example of t3 on Fig. 4.14). Otherwise the function follows all possible
history versions, relying on the guards on ancestor activity encoded in entry
transitions to enforce the right path at runtime.

fun Entry-Or(s : Stateor, ts : State∗
and

) : Signal′∗

let {s1, . . . , sp} = children(s)
in if s ∈ dom(his)
then 〈eens , e

h
s 〉ˆEntry-And(s1, ts)ˆ . . . ˆEntry-And(sp, ts)

else 〈een
Default(s,ts)〉ˆEntry-And(Default(s, ts), ts)

fun Entry-And(s : Stateor, ts : State∗
and

) : Signal′∗

let {s1, . . . , sp} = children(s)
in Entry-Or(s1, ts)ˆ . . . ˆEntry-Or(sp, ts)

84 Back-End & Runtime

fun Default(s : Stateor, ts : State∗
and

) : Stateand

if ∃t ∈ ts, p ∈ children(s). p↘∗ t
then p
else ini(s)

The semantics does not specify in which order concurrent components
should be entered by Entry-And. Any order consistent with ↘, including
interleaved entry traces of concurrent components, is legal. The value re-
turned by Entry-And corresponds to a single deterministic choice of such a
sequence. The omission of other choices in interleaving is permitted because
our implementation relation is based on simulation.

The Default function is a helper, which determines a default child
for a given or-state. It checks whether further targets are specified below
and follows the indicated path if available. The entering path below the
history states cannot be decided at compile time, as the actual entry schedule
depends on the runtime properties of these states. An administrative history
signal ehs is triggered and a history transition is added for each child p of
history state s, so that only one child of the history state is entered at a
time.

Iand
ehs [flat(p)]/en(p)
−−−−−−−−−−−−−−→Iand (4.24)

These history transitions are similar to entry transitions, except that they
have stronger firing conditions. The guard flat(p) guarantees that only one
of these transitions will fire whenever eh

s is triggered—the one entering the
most recently active child—which corresponds to a runtime choice of entry
schedule. After ehs entry schedules for all children of children of s are ap-
pended. Due to the guard on parent activity in entry transitions (4.19) only
one cascade will actually have effect at runtime.

An entry schedule of a transition is computed starting with its scope
and the set of targets. The schedule of t2 is: 〈e

en
B
, eh

D
, een

D11
, een

E1
, een

E11
〉. The

schedule of t3 is: 〈e
en
B
, een

D1
, een

D12
, een

E1
, een

E11
〉, see Fig. 4.14.

Exit Schedule

The exit schedules are much easier to compute than the entry schedules.
For a given scope s we define Exit(s) to return the sequence of exit signals
for and-state descendants of s produced in postorder traversal. For instance
Exit(A) = 〈eex

C11
, eex

C12
, eex

C1
, eex

C2
, eex

A
〉. Note that any entry or exit schedule

cannot be longer than |Stateand|.

Transition Schedule

Each hierarchical transition t = s e [g exp]/os
−−−−−−−−−−→ts is translated to a flat transition

t′ which schedules the relevant signals realizing the semantics. The condition

4.5 Polynomial Flattening 85

entry transitions

entry transitions

exit transitions,
action transitions,

history transitions
B

A C1 C11

C12C2 D12D2

E1

E11

Iand

E12

D1 D11

rootand

t′3

t′2
t′1

t′4

IorE′
1

ED′
1

DC′
1

A′root

Figure 4.15: An imprecise but intuitive overview of results of flattening of
statechart of Fig. 2.1

part of the transition remains unchanged, except for the flattened guard:

t′ = s e [flat(s ∧ g) exp]/Exit(scope(t))ˆ〈et〉ˆEntry-Or(scope(t), ts)
−−→Iand (4.25)

Consider the result obtained for the transition t1 of our example:

t′1 = D1
e1 [γ]/Exit(root

′)ˆ〈et1 〉ˆEntry-Or(root′, {C11})
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→Iand , (4.26)

where γ has been shown in (4.18).

Trans′ is the set of all action transitions, history transitions and schedul-
ing transitions. Assuming that guards are not translated to DNF formulæ
there are at most 3|Stateand|+ |Trans| new transitions in the flat model and
each of them is at most 2|Stateand| times long. The size change is within
the polynomial bounds in the size of hierarchical model, or more precisely
in O(|State|2 + |State| · |Trans|). The size of the flat statechart is bounded
by the square of the size of the original hierarchical statechart. As we ar-
gued previously, expansion of guards to DNF clauses and the respective
transition multiplication incurres only polynomial size increase for realistic
models (and this costs only affects variants of statecharts with restrcited
guard syntax as visualSTATE).

4.5.2 Example Results

Fig. 4.15 presents an overview of the flat statechart produced by applying the
algorithm of section 4.5.1 to the model of Fig. 2.1. The notation is imprecise,
aiming at intuitive explanation. More precise account of the transformation
can be found on Fig. 4.16.

4.5.3 Code Generation

Although polynomial, the algorithm of the previous section remains rather
inefficient. We would like to eliminate excess transitions, simplify guards,
and reduce the number of administrative signals. The resulting flat rulesets

86 Back-End & Runtime

External and internal events:

Event′ = {e1, e2}

Signal′ = {s1, e
en

A , e
en

B , e
en

C1
, eenC2

, eenD1
, eenD2

, eenE1
, eenC11

, eenC12
, eenD11

, eenD12
, eenE11

, eenE12
,

eexA , e
ex

B , e
ex

C1
, eexC2

, eexD1
, eexD2

, eexE1
, eexC11

, eexC12
, eexD11

, eexD12
, eexE11

, eexE12
, ehD,

et1 , et2 , et3}

Exit transitions:

Iand
eex
A
[A]/ex(A)

−−−−−−−−−−→Iand, Iand
eex
B
[B]/ex(B)

−−−−−−−−−−→Iand, Iand
eex
C1
[C1 ∧ A]/ex(C1)

−−−−−−−−−−−−−−−→Iand,

Iand
eex
C2
[C2 ∧ A]/ex(C2)

−−−−−−−−−−−−−−−→Iand, Iand
eex
D1
[D1 ∧ B]/ex(D1)

−−−−−−−−−−−−−−−→Iand, Iand
eex
D2
[D2 ∧ B]/ex(D2)

−−−−−−−−−−−−−−−→Iand,

Iand
eex
E1
[E1 ∧ B]/ex(E1)

−−−−−−−−−−−−−−−→Iand, Iand
eex
C11
[C11 ∧ C1 ∧ A]/ex(C11)

−−−−−−−−−−−−−−−−−−−−−→Iand,

Iand
eex
C12
[C12 ∧ C1 ∧ A]/ex(C12)

−−−−−−−−−−−−−−−−−−−−−→Iand, Iand
eex
D11
[D11 ∧ D1 ∧ B]/ex(D11)

−−−−−−−−−−−−−−−−−−−−−→Iand,

Iand
eex
D12
[D12 ∧ D1 ∧ B]/ex(D12)

−−−−−−−−−−−−−−−−−−−−−→Iand, Iand
eex
E11
[E11 ∧ E1 ∧ B]/ex(E11)

−−−−−−−−−−−−−−−−−−−−−→Iand,

Iand
eex
E12
[E12 ∧ E1 ∧ B]/ex(E12)

−−−−−−−−−−−−−−−−−−−−−→Iand

Entry transitions:

Iand
een
A
[true]/en(A)

−−−−−−−−−−−−−→A, Iand
een
B
[true]/en(B)

−−−−−−−−−−−−−→B, Iand
een
C1
[A]/en(C1)

−−−−−−−−−−−→C1,

Iand
een
C2
[A]/en(C2)

−−−−−−−−−−−→C2, Iand
een
D1
[B]/en(D1)

−−−−−−−−−−−−→D1, Iand
een
D2
[B]/en(D2)

−−−−−−−−−−−−→D2,

Iand
een
E1
[B]/en(E1)

−−−−−−−−−−−→E1, Iand
een
C11
[C1 ∧ A]/en(C11)

−−−−−−−−−−−−−−−−→C11,

Iand
een
C12
[C1 ∧ A]/en(C12)

−−−−−−−−−−−−−−−−−→C12, Iand
een
D11
[D1 ∧ B]/en(D11)

−−−−−−−−−−−−−−−−−−→D11,

Iand
een
D12
[D1 ∧ B]/en(D12)

−−−−−−−−−−−−−−−−−−→D12, Iand
een
E11
[E1 ∧ B]/en(E11)

−−−−−−−−−−−−−−−−−→E11, Iand
een
E12
[E1 ∧ B]/en(E12)

−−−−−−−−−−−−−−−−−→E12

Action transitions (for original hierarchical transitions):

Iand
et1 [true]/〈o1, s1〉
−−−−−−−−−−−−−−→Iand, Iand

et2 [true]/〈o2〉
−−−−−−−−−−−−→Iand,

Iand
et3 [true]/〈〉
−−−−−−−−−−→Iand, Iand

et4 [true]/x = (x + n)%2
−−−−−−−−−−−−−−−−−−−−→Iand

History entries:

Iand
eh
D
[D1]/〈e

en

D1
, een

D11
〉

−−−−−−−−−−−−−−−→Iand, Iand
eh
D
[D2]/〈e

en

D2
〉

−−−−−−−−−−−→Iand

Schedule transitions (bold on the diagram 4.15):

t′1 = D1
e1 [(D1 ∧ B) ∧ ((D12 ∧ D1 ∧ B) ∧ ¬(E11 ∧ E1 ∧ B))]/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

〈eex
C11

,eex
C12

,eex
C1

,eex
C2

,eex
A

,eex
D11

,eex
D12

,eex
D1

,eex
D2

,eex
E11

,eex
E12

,eex
E1

,eex
B

,et1 ,een
A

,een
C1

,een
C11

〉
−−−→ Iand

t′2 = A s1 [A ∧ ¬(C2 ∧ A)]/
−−−−−−−−−−−−−−−→

〈eex
C11

,eex
C12

,eex
C1

,eex
C2

,eex
A

,eex
D11

,eex
D12

,eex
D1

,eex
D2

,eex
E11

,eex
E12

,eex
E1

,eex
B

,et2 ,een
b

,eh
D
,een

D11
,een

E1
,een

E11
〉

−−→ Iand

t′3 = C2
e2 [(C2 ∧ A) (x == 1)]/
−−−−−−−−−−−−−−−−−−−→

〈eex
C11

,eex
C12

,eex
C1

,eex
C2

,eex
A

,eex
D11

,eex
D12

,eex
D1

,eex
D2

,eex
E11

,eex
E12

,eex
E1

,eex
B

,et3 ,een
B

,een
D1

,een
D12

,een
E1

,een
E11

〉
−−→ Iand

t′4 = C1

e2 [C1 ∧ A]/〈eex
C11

, eex
C12

, eex
C1

, et4 , een
C2

〉
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→Iand

Figure 4.16: The complete ruleset produced during flattening. Observe
the inefficiencies, which can be removed using techniques of section 4.5.3,
especially redundant checks in guards and use of a long signal queue.

4.5 Polynomial Flattening 87

are extremely simple to represent and interpret using a minimal runtime
system.
We will use φ be a formula overapproximating the set of reachable con-

figurations of hierarchical model, as seen before.

Administrative signals

Massive use of signals is a disadvantage at runtime as it demands writable
memory for maintenance of the signal queue. We get rid of administrative
signals by exploiting the fact that code generation is actually solving a sim-
pler problem than the generic flattening defined above. The main difference
is that at runtime transitions are processed and fired in some fixed determin-
istic order. This order may substitute a signal queue in guaranteeing proper
schedules of action transitions. For instance the t1 transition of Fig. 2.1 can
be flattened to:

exit:

D11
e1 [D11 ∧ D1 ∧ (D12 ∧ ¬E11)]/ex(D11)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→∅

D12
e1 [D12 ∧ D1 ∧ (D12 ∧ ¬E11)]/ex(D12)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→∅

D2
e1 [D2 ∧ D1 ∧ (D12 ∧ ¬E11)]/ex(D2)
−−−−−−−−−−−−−−−−−−−−−−−−−−−→∅

D1
e1 [D1 ∧ (D12 ∧ ¬E11)]/ex(D1)
−−−−−−−−−−−−−−−−−−−−−−−→∅

E11
e1 [E11 ∧ D1 ∧ (D12 ∧ ¬E11)]/ex(E11)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→∅

E12
e1 [E12 ∧ D1 ∧ (D12 ∧ ¬E11)]/ex(E12)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→∅

E1
e1 [E1 ∧ D1 ∧ (D12 ∧ ¬E11)]/ex(E1)
−−−−−−−−−−−−−−−−−−−−−−−−−−−→∅

B e1 [B ∧ D1 ∧ (D12 ∧ ¬E11)]/ex(B)
−−−−−−−−−−−−−−−−−−−−−−−−−→∅

(4.27)

actions:
{

D1
e1 [D1 ∧ (D12 ∧ ¬E11)]/〈o1, s1〉
−−−−−−−−−−−−−−−−−−−−−−−−→∅ (4.28)

entry:
{

D1
e1 [D1 ∧ (D12 ∧ ¬E11)]/en(A)ˆen(C1)ˆen(C11)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→∅ (4.29)

According to the semantic rules of chapter 2, the empty set of targets
of the flat transition means that the active state configuration remains un-
changed. Although similar to loop transitions, the targetless transitions are
more efficient to execute.
The above sequence has been obtained by instantiating a transition for

every signal of the schedules of t′1. Its top–down interpretation corresponds
to firing t′1. In the generic algorithms of the previous section we would use
a signal queue to guarantee this sequencing. Presently no administrative
signals are used, but guards are evaluated multiple times and entry/exit
transitions cannot be reused.

Guard Analysis

Guard analysis may be used to eliminate superfluous transitions and com-
putations. Note that the flat function produces guards with redundant con-

88 Back-End & Runtime

ditions (see γ in (4.18)). Such guards can be improved, by optimization
performed under the assumption that formula φ holds. This automatically
removes references to constantly true variables, superfluous states (such us
E1, which is equivalent to E) and repeating clauses. Removal of variables
should be accompanied by removal of corresponding states from the flat
structure. There is no need to represent them at runtime. For example
states E1 and Iand (and their parents) would be eliminated and guards sim-
plified respectively.

While performing guard analysis, unsatisfiable guards can be found on
transitions. Transitions containing them can be discarded. For example the
exit transition from state D2 in (4.27) will never fire as D1 and D2 may never
be active at the same time according to φ. SCOPE relies on a BDD engine
in the implementation of guard analysis.

Merging Transitions

Some transitions in the sequence can be merged saving space and increasing
the execution speed. Whenever guards of two subsequent transitions are
equivalent (under φ), the two rules can be merged into a single one whose
action is the concatenation of original actions and whose set of targets is the
union of the original sets. A special case, which is particularly easy to detect,
is that of the last two entries in every group implementing a single transition.
For example transitions (4.28) and (4.29) can be combined yielding:

D1
e1 [D1 ∧ (D12 ∧ ¬E11)]/〈o1〉ˆen(A)ˆen(C1)ˆen(C11)ˆ〈s1〉
−−−→∅ (4.30)

Although much more complex, merging is also applied to transitions
realizing exit schedules. Exit transitions, or parts of thereof, can be joined
if there is some firm knowledge about the source states of a given transition
(inferred from the guard). In the extreme case, when the knowledge about
the source and target states is complete the transition gets translated to a
single rule. This is for example the case with t3:

C2
e2 [C2 ∧ C1 ∧ A]/ex(C2)ˆex(C1)ˆex(A)ˆen(B)ˆen(D1)ˆen(D12)ˆen(E1)ˆen(E11)
−−−→∅ . (4.31)

4.5.4 Evaluation

The algorithm has been evaluated using both artificial and real industrial
examples. Efficiency has been measured against the hierarchical back-end
of SCOPE, which in turn performs slightly better than the implementation
of IAR visualSTATE. Executable sizes and execution times are reported for
skeleton control programs with dummy action and guard functions, compiled
by gcc ver. 3.2 targeting x86 PC (see Tables 4.3–4.4). Execution time has
been measured for feeding the compiled system with 107 random events in

4.5 Polynomial Flattening 89

0

5

10

15

20

trios03trios01peercdplayerclockradioliftactions01

co
d
e

si
ze

[k
by

te
s]

model representation

runtime size

GCC startup code, etc

fl
at

te
ni

ng

hi
er

ar
ch

ic
al

executable size
Model states trans. depth

FL-CG HI-CG ratio

actions01 4 1 3 3 036 3 704 0.82

lift 18 19 3 3 644 4 372 0.83

clockradio 20 27 7 4 108 4 652 0.88

cdplayer 21 16 7 3 560 4 312 0.83

peer 275 192 23 9 252 10 536 0.88

trios01 1121 840 9 20 772 24 108 0.86

trios03 1121 840 9 19 972 24 684 0.81

Table 4.3: Size results: hierarchical code generation vs flattening-based code
generation. FL-CG denotes code generation for flat models, HI-CG denotes
direct code generation for hierarchical models. Executable sizes in bytes

90 Back-End & Runtime

0

1

2

3

4

5

6

trios03trios01peercdplayerclockradioliftactions01

ex
ec

u
ti
on

ti
m

e
[l
og
s]

hierarchical CG

flattening CG

execution time
Model states trans. depth

FL-CG HI-CG ratio

actions01 4 1 3 5.71 6.03 0.95

lift 18 19 3 15.29 21.41 0.71

clockradio 20 27 7 8.84 11.69 0.76

cdplayer 21 16 7 9.38 11.77 0.80

peer 275 192 23 15.19 26.16 0.58

trios01 1121 840 9 335 255 1.31

trios03 1121 840 9 288 259 1.10

Table 4.4: Speed results: hierarchical code generation vs flattening-based
code generation. FL-CG denotes code generation for flat models, HI-CG
denotes direct code generation for hierarchical models. Running times of
the generated code in seconds.

H8 executable size
Model

FL-CG HI-CG ratio

actions01 1 312 1 906 0.69

lift 1 750 2 356 0.74

clockradio 2 116 2 640 0.80

cdplayer 1 700 2 344 0.73

peer 6 298 7 226 0.87

trios01 17 670 18 326 0.96

trios03 16 878 20 064 0.84

Table 4.5: Sizes of executables cross-compiled with h8300-hms-gcc 3.3.2.

4.5 Polynomial Flattening 91

AVR executable size AVR runtime vs model size

Model

F
L
-C
G

H
I-
C
G

ra
ti
o

F
L
rt
im
e

F
L
m
o
d
el

H
I
rt
im
e

H
I
m
o
d
el

actions01 952 1 592 0.60 313 25 925 50

lift 1 428 2 076 0.69 459 353 1 047 412

clockradio 1 856 2 412 0.77 377 826 947 800

cdplayer 1 400 2 108 0.66 353 431 1 027 465

peer 6 076 7 004 0.87 530 4 684 1 226 4 888

trios01 17 396 18 212 0.96 409 16 371 1 143 16 454

trios03 16 604 19 980 0.83 409 15 580 1 229 18 134

Table 4.6: Sizes of the runtime interpreter and the runtime model repre-
sentation for gcc-avr compiled code. These numbers are included in the
complete executables of the left side. Approximately 600 bytes is left out in
each line, used by gcc for internal initialization code.

repetitive series (run on Linux, 450MHz Pentium II). More experiments has
been carried out with GCC for AVR and H8/300, exhibiting similar results
(see tables 4.5–4.6). This confirms the expectation that the code generated
from statecharts is hard for compilers to optimize and there is a need for
advanced analysis and transformations on the model level.

The first model, actions01, is the smallest model which can be built
with the visualSTATE design environmnet. It contains two states and a
single transition. This model exhibits the difference between sizes of the
two runtime libraries. The difference does not increase for bigger examples—
both algorithms scale well. However, the flattened code is faster, simpler
and smaller, despite the fact that less engineering effort had been put in the
implementation of the specific parts of the runtime. No size explosions are
visible for big models (trios01, trios03). Peer, the biggest real life example,
a complicated model of a very advanced coffee vending machine exhibits a
particularly good result, which is perhaps the best recommendation of our
flattening.

The lift example is a flat statechart and as such is not affected by flatten-
ing. Still the flattened version operates much faster than hierarchical one.
This is because the hierarchical interpreter is much more sophisticated than
the flat one, and lots of this sophistication is useless for this model. Flat
models constitute an important class of models, appreciated by engineers for
its simplicity and good applicability to small size tasks. It is thus comforting
that a single code generation scheme, the one based on flattening, performs
well for both flat and hierarchical models.

92 Back-End & Runtime

[bytes]

current event (global) 3

state representation (global) 8

stack 30

model variables (global) 4

TOTAL [bytes] 41+4

Table 4.7: RAM usage in SCOPE: quick generous estimate for a simple
thermostat model, assuming 8bit word, 32bit addressing. The stack usage
is nearly half smaller with more common 16-bit addressing

The last two models (from trios series) are artificial examples. They
consist of triples of and-states and or-states interleaved several times. They
resemble our (α, β)-models of section 4.4.1, which have been used to demon-
strate the superpolynomial nature of flattening in absence of sequential mes-
sage passing. As expected, no explosion is observed in the present results,
where we exploit the sequential nature of code generation. Such highly con-
current models are hardly met in industrial applications, which makes the
slow-down reported not essential. Also none of the industrial cases we know
suffers from to slow interpretation of the generated control code.

Last but not the last, SCOPE is very conservative about using writable
memory at runtime. Table 4.7 shows a summary of RAM usage for a simple
thermostat model. Note that only the third entry denotes the memory used
by SCOPE for internal purposes.

4.5.5 Correctness Sketch

We shall briefly sketch the correctness argument for the flattening algorithm pre-
sented above. We require that the priority ordering on states J of the hierarchical
statechart (determining the traversal orders) is total and fixed, and that the entry
schedules of all flat transitions have been generated in agreement with this ordering.
The priority ordering on transitions C is assumed to be entirely nondeterministic
(empty) for both flat and hierarchical statecharts (in practical implementations
though, both would be fixed and in agreement).

We will assume that S ′ is a flat statechart that has been obtained from the
hierarchical statechart S by applying our flattening algorithm, agreeing with J

ordering. We begin with defining an auxiliary correspondence relation for well-
formed global states of hierarchical and flat statecharts:

Definition 4.7. Let S ′ = (ΓE ,ΓF ,ΓV ,Signal
′,VarE ,VarI ,State

′,↘′, ini′, his′, ex′,
en′,Trans′) be a flat statechart and S = (ΓE ,ΓF ,ΓV ,Signal,VarE ,VarI ,State,↘,

4.5 Polynomial Flattening 93

ini, his, ex, en,Trans) be a hierarchical statechart such that:

1. State′
or

= Stateor ∪ {Ior, rootor}

2. State′and = Stateand ∪ {Iand, rootand}

3. ∀s1 ∈ Stateor.∀s2 ∈ Stateand. s1↘ s2 ⇒ s1↘′ s2

4. ∀s ∈ Stateor. rootand↘
′ s1

5. rootor↘′ rootand ∧ Ior↘′ Iand ∧ rootand↘′ Ior

6. dom(his′) = ∅ ∧ dom(ex′) = ∅ ∧ dom(en′) = ∅

The pair of state components (σ′, %′) of S ′ corresponds to the triple (σ, %, his) of
state components of a hierarchical statechart , written (σ ′, %′) + (σ, %, his), iff

7. σ ⊆ σ′ ∧ %′ = % ∧ rng(his) ⊆ σ′

8. ∀s ∈ σ′.s 6= Iand ⇒ (s ∈ σ ∨ descend+(s) ∩ σ 6= ∅ ∨ ancest+(s) ∩ Stateand 6⊆ σ
′) ,

where descend and ancest are defined using ↘ (and not ↘′).

Proposition 4.8. If (σ′, %′, his′) + (σ, %, his) then ∀g ∈ Guard. (σ |= g ⇐⇒ σ′ |=
flat(g)) and ∀c ∈ Exp. (% |= exp ⇐⇒ %′ |= exp).

Proposition 4.9. If transition t′ of S ′ is a flattened version of transition t of
S (a schedule transition) and (σ′, %′, his′) + (σ, %, his) and signal queues of both
models have identical content q′ = q then t′ ∈ enabled(hd q′, σ′, %′) ⇐⇒ t ∈
enabled(hd q, σ, %).

Observe that firing a single transition in the hierarchical model executes a
sequence of actions (ignore the possibility of triggering local signals for now). Firing
a flattened transition does not execute any actions in the first step, but it only
places administrative signals in the signal queue. The second run in the very same
macrostep over these signals actually executes actions. So if there are no signals
on states and transitions then the outputs produced by both models are the same.
The following proposition generalizes these observation for all enabled transitions:

Proposition 4.10. If (σ′
0, %

′
0, his

′
0) + (σ0, %0, his0) and the S does not contain any

signals by itself, then:

whenever 〈σ′
0, %

′
0, his0〉

e(v1,...,vm) os′!
−−−−−−−−−−−→〈σ′

1, %
′
1, his

′
1〉

then also 〈σ0, %0, his0〉
e(v1,...,vm) os!
−−−−−−−−−−→〈σ1, %1, his1〉

and (σ′
1, %

′
1, his

′
1) + (σ1, %1, his1) .

All transitions are translated to a long schedule of signals in the first step in
some nondeterministic order, which can map the original order. Then the schedule
is discharged producing exit, entry and transition actions in agreement with J,
leading to new state which is in correspondence with the new hierarchical state.
After the warm-up we shall now allow signals in the source model and consider

the execution of macrosteps in the flat model. All events and signals of the original
model (hierarchical microsteps) are now always processed in two flat microsteps. As
an example consider a system where two transitions fire in reaction to an event e and

94 Back-End & Runtime

schedule for transition 1
fired by signal s1 fired by signal s1

schedule for transition 1 schedule for transition 1
fired by signal s2 fired by signal s2

schedule for transition 2 schedule for transition 3
fired by signal s2

signal s2
by transition t2

transition t1
schedule realizing

transition t2
schedule realizing

by transition t1

signal s1 triggered

e

M
ic
ro
st
ep

M
ic
ro
st
ep

M
a
cr
o
st
ep

M
icro
step

M
icro
step

M
icro
step

M
icro
step

Hierarchical Model

M
in
istep

M
in
istep

Flattened Model

M
a
cro
step

empty

empty

empty

empty

Figure 4.17: Ministeps of the flat statecharts. Each bar represents the state
of the signal queue after a single microstep of the flat model. Each hierar-
chical microstep takes two flat microsteps.

then each of them triggers a single signal that has to be processed in the subsequent
microstep. The reactions to these signals only produce outputs, no more signals.
Figure 4.17 demonstrates the content of signal queue after each microstep in the
flat model. Two consecutive microsteps constitute a ministep: produce a schedule
and discharge it. We can prove that ministeps preserve correspondence relation + .

Definition 4.11. A ministep is a sequence of microsteps of a flat statechart iterated
until the queue only contains elements of Signal (no administrative signals).

Proposition 4.12. If two global states of S and S’ correspond and both models
have the same signal queue then the microstep of S produces the same outputs as
the ministep of S’ and the same signal queue.

The above proposition directly generalizes to the macrostep level.
A similar theorem can also be proved for bisimulation, if both priority orderings

on states and transitions J and C are total since in such case the models are
deterministic.

4.6 Related Work

Most of the material presented in this chapter has been previously published.
The hierarchical code generator was described in [130], the lower bound
on flattening was proved in [133, 134]. The efficient polynomial flattening
algorithm and its practical implementation were presented in [132]. It is
the first time though, that this material has been put together in a uniform
framework, using a fairly complete language of statecharts.

4.6 Related Work 95

There is a multitude of research-based statechart translators available.
Most of them take hierarchical code generation approach, without perform-
ing more significant optimizations [138, 116, 65]. Much less care is taken to
make the implementation efficient. The focus is more on code readability an
use of natural constructs of target language than efficiency. The usefulness
of such tools for constrained embedded systems is not usually considered.
Erpenbach [32] in his dissertation focuses mostly on the worst case reac-

tion time analysis, proposing only a very simple hierarchical representation
based on switch statements. He addresses the cost of double-buffering prob-
lem for variables, proposing an optimization which reorders the transitions
to decrease the need for buffering—so that assignments happen after read
accesses, if possible. Our flattening algorithm is fully compatible with his
approach, because we have only demanded that rules within a group imple-
menting a single hierarchical transition maintain a specific order. We do not
impose any restrictions on the relative order among the groups themselves,
which suffices for Erpenbach’s algorithm. In other words Erpenbach only
requires control over the C ordering, which we do not constrain.
Björklund, Lilius and Porres [13] devise an intermediate language, that

should be compilable efficiently. Nevertheless, the use of flattening in the
course of translation indicates possible exponential growth of code (they do
not give any evidence that their flattening is polynomial, nor what equiva-
lence or refinement their transformation preserves).
The hierarchical code generator was mostly inspired by implementation

of Behrmann and others [7]. I have abandoned one of their main ideas
though: memoization of guard values (to speed up condition evaluation).
I recognize it unsuitable for constrained systems, where writable memory
is a scarce resource. Instead I provided runtime representation, which can
recompute guards at low cost.
Drusinsky [31] and Ramesh [110] discuss the state encoding problem

from hardware implementation perspective. Both encodings proposed are
more compact than those presented here. A hardware implementation can
very efficiently extract single bits and groups of bits from the state register,
whereas this seems to be expensive in software. Apart from this difference
Drusinsky’s encoding is very much alike to the flag-based encoding of the
hierarchical back-end in SCOPE. Both papers are very brief on explaining
the structure of combinational block which implements the reaction rela-
tion. The applicability of these results for software synthesis should still be
investigated.
One such related investigation was undertaken by Jacobsen in his already

mentioned thesis [60]. Jacobsen represented statecharts (both current con-
figuration and the transition relation) in Binary Decision Diagrams, which
is really similar to implementing them in a combinational block. He used a
BDD package and a simple loop as a runtime engine. Despite trying various
variable ordering his conclusions were disappointing. Both the representa-

96 Back-End & Runtime

tion and the runtime engine were significantly bigger from the kernel and
rule tables of visualSTATE, with which SCOPE competes well both in the
hierarchical and flattening version.

My Configuration-Bound algorithm approximating cardinality of the
active basic states set can be seen as a simpler and weaker version of Drusin-
sky’s algorithm for finding maximum-cardinality exclusivity set presented
in [31].

Both the existence of polynomial flattening algorithm and the efficiency
of the implementation are somewhat surprising as numerous authors pre-
sented flattening algorithms suffering from size explosion or informally con-
jectured about the superpolynomial hardness of this problem [130, 26, 15,
5, 16, 112].

The impact of introducing hierarchy in statecharts has been studied
previously [3, 5], however only questions relevant to the model checking
community have been addressed. Our developments discuss succinctness of
hierarchical models from the program synthesis perspective.

Alur et al. [3] thoroughly discuss the impact of hierarchy on model check-
ing problems and the size of models. Sadly, or fortunately for us, they omit
the relation between concurrent hierarchical models and flat models in our
sense, thus their results cannot be directly used to state the hardness of flat-
tening. Moreover Alur and colleagues exploit the sharing of subhierarchies
in their semantics, which is not commonly used in engineering modeling
languages (see UML statecharts).

David et al. [26] claim that flattening a hierarchical transition with their
algorithm may lead to an exponential growth of the model in the depth
of the structure. Note that it exactly agrees with formula 4.9 presented
above. Thus their algorithm can be used as another argument explaining
observation 4.5. The question of establishing strict bounds for arbitrary
models in the size of the model still remains open.

Drusinsky and Harel [30] discuss the succinctness introduced by cooper-
ative concurrency, however they do not consider the influence of hierarchy
on succinctness. The present result explores a different dimension of their
succinctness space for statecharts.

4.7 Beyond the Basics

Our polynomial flattening algorithm relied on the sequential handling of sig-
nals in visualSTATE (and UML). Other variants of statecharts, most notably
[42, 108] and [86], offer alternative signal handling semantics, where all sig-
nals produced in a single microstep are processed simultaneously in the next
microstep. Such semantics drastically reduces the control we have over the
order of processing. We conjecture that an algorithm similar to ours cannot
be used for original Harel’s statecharts. Thus the result of theorem 4.4 is

4.8 Summary 97

likely to be strengthened, by allowing set-based signal communication in the
target language. This remains the main open question in the future work.

Our execution engine for flat statecharts (section 4.3) very much resem-
bles the operation of the most restricted industrial kernels for embedded
systems. I had the pleasure of examining such a proprietary kernel used in
laboratories of Danfoss A/S in development of control programs for cooling
devices. The conclusion was that it would be rather straightforward to port
SCOPE’s back-end to target this very kernel. The expected sizes of gen-
erated programs should be close to those using the flattening back-end of
current SCOPE. Danfoss models are restricted in nature. This makes their
kernel smaller than our runtime engine. At the same time their models can
be represented more compactly, because they are written as low level linker
scripts (which we have not used in SCOPE to warrant higher portability).
Motivated by the compactness of the generated code, the company expressed
interest in developing a port targeting their kernel.

As we have mentioned in section 4.1, current treatment of signals in
the model-checker of visualSTATE is very inefficient. Improvements in treat-
ment of communication in this model-checker are under scrutiny in a newly
established research project between IAR Systems A/S and CISS, at Aal-
borg University. Efficient analysis of models with queues will not only boost
some proofs of correctness, but will also enable many optimizations in code
generation that cannot be otherwise conducted on models.

4.8 Summary

In this chapter we have thoroughly explained the works of two major modes
of SCOPE code generator: one based on preserving the hierarchy tree at
runtime, and one based on flattening. The hierarchical engine has been
shown to perform satisfactorily, which is important because its code gener-
ation algorithm is rather direct, so it is easier to trust it. As of my best
knowledge this was the first hierarchical code generator explicitly targeting
efficiency and conservative usage of resources. Nevertheless the new sophis-
ticated flattening algorithm beats it for virtually all models, while enjoying
a very simple execution engine at runtime.

On the theoretical side we have shown the lower bound on flattening in
absence of message passing in the target language. This proof, though not
very instructive, inspired us to design an efficient flattening algorithm: it
hinted that one should use message passing internally. A number of actual
flattening algorithms have been indicated, which face the size explosion issue,
which has now been shown to be inherent for the problem, not only for the
algorithms themselves.

Our lower bound result presents an argument against code generation
techniques for statecharts, which are based on flattening in absence of mes-

98 Back-End & Runtime

sage passing, or any other concept able to enforce the order of execution.
Such techniques would be tempting otherwise, since lack of signal communi-
cation significantly lowers the usage of writable memory, which is a crucial
requirement in many engineering applications, especially in the embedded
systems domain.

5

Color-blind Semantics for
Environments

As we have argued before the reactive synchronous paradigm seems to be
predominant in development of embedded software. In the present chapter
we consider the problem of modeling execution environments for such sys-
tems in general. Our environments are color-blind : they may not be able to
distinguish some responses of the system. This property can be exploited
in optimization of systems, which goes beyond dead code elimination and
early compile-time execution, by permitting some mutations in the system.

One immediate theoretical application of color-blindness, presented in
section 5.6, is an elegant modeling of various output structures, an alterna-
tive to the techniques presented in section 2.2.3. In chapter 6 they will be
used in the modeling and development of software product lines.

Our development unfolds as follows. We begin with the introduction
of I/O alternating transition systems, which are abstract models for gen-
eral reactive synchronous systems. In section 5.2 we extend them with the
novel notion of color-blindness. Section 5.3 defines composition operators
for color-blind environments, while section 5.4 argues that color-blind equiv-
alence can be used in applications typical for a refinement preorder. In sec-
tion 5.5 the theoretical framework is instantiated for more realistic languages
like statecharts. As an immediate example we show how color-blindness
can replace parameterization of output structure (section 5.6) and discuss
various notions of discrimination (section 5.7). Finally possible extensions
(section 5.8) and the related work (section 5.9) are discussed.

The theory presented here is rather central for the entire work. Still
one can safely omit sections 5.5.2, 5.6 and 5.8-5.9, as well as all the proofs,
without compromising on comprehension in later sections and chapters.

100 Color-blind Semantics for Environments

5.1 I/O Alternating Transition Systems

Two core properties of reactive synchronous systems are input-enabledness
(see page 32) and synchronicity (see page 17). A reactive synchronous sys-
tem can react to any input event at any time. Each reaction occurs in
infinitely short time, so that the system is always able to observe the arrival
of the next event. I/O-alternating transition systems can conveniently be
used in formalization of reactive input-enabled semantics:

Definition 5.1. An I/O-alternating transition system of reactive synchro-
nous processes, or IOATS in short, is a tuple

P = (In,Out,Gen,Obs,
!
−→,

?
−→, s0) ,

where In and Out are sets of inputs and outputs, Gen is a finite set of gen-
erator states (generators), Obs is a finite set of observer states (observers),
!
−→ ⊆ Gen×Out×Obs is a generation relation and

?
−→ ⊆ Obs× In×Gen is

an observation relation. The initial state s0 is a generator or an observer.

We have distinguished two transition relations:
!
−→ is a generation rela-

tion, which advances the process from a generator to an observer state, while
?
−→ is an observation relation advancing the system from an observer to a

generator state. This alternation is inherent to the way synchronous systems

operate. We shall write S
o!
−→s, instead of (S, o, s) ∈

!
−→ and s

i?
−→S instead of

(s, i, S) ∈
?
−→. The (In,Out) pair is typically referred to as a signature of

the transition system. Also we adopt the convention that lower case letters
are used for observers and capital letters are used for generators, wherever
possible.

Our observers are input-enabled, so they never block:

∀s ∈ Obs. ∀i ∈ In. ∃S, o, s′. s
i?
−→S ∧ S

o!
−→s′ (5.1)

A refinement relation states that a certain IOATS implements a subset of
functionality of the other.

Definition 5.2. Consider two I/O alternating transition systems:

S1 = (In,Out,Gen1,Obs1,
!
−→1,

?
−→1, s

0
1) ,

S2 = (In,Out,Gen2,Obs2,
!
−→2,

?
−→2, s

0
2) .

5.1 I/O Alternating Transition Systems 101

A binary relation R ∈ Obs1 ×Obs2 constitutes a simulation on observers of
S1 and S2 if (s1, s2) ∈ R implies that:

whenever s1
i?
−→S1 ∧ S1

o!
−→s′1

then for some S2, s
′
2 also s2

i?
−→S2 ∧ S2

o!
−→s′2 and (s′1, s

′
2) ∈ R .

Now let R be the largest of such relations ordered by inclusion. We say that
an observer s2 simulates an observer s1, written s1 6 s2, if (s1, s2) ∈ R.
Finally we say that S2 simulates S1, written S1 6 S2, iff s

0
1 6 s02.

Let S1 be an endofunction (domain equals codomain) on binary relations on ob-
servers of S1 and S2, such that

S1(R) = {(s1, s2) | ∀i, S1, o, s
′
1.∃S2, s

′
2.

s1
i?
−→S1 ∧ S1

o!
−→s′1 ⇒ s2

i?
−→S2 ∧ S2

o!
−→s′2 ∧ (s′1, s

′
2) ∈ R} (5.2)

Proposition 5.3. A binary relation R constitutes a simulation between observers
of two IOATSs S1 and S2 iff R ⊆ S1(R).

Proposition 5.4. S1 is a monotone endofunction on a complete lattice of binary
relations ordered by inclusion.

By Knaster’s and Tarski’s [123] fixpoint theorem S1 has the greatest fixpoint and

the simulation relation 6 of Def. 5.2 equals this greatest fixpoint, which justifies

the correctness of our definition.

An equivalence relation states that two IOATSs are identical (up to a
certain criterion):

Definition 5.5. Consider two I/O alternating transition systems:

S1 = (In,Out,Gen1,Obs1,
!
−→1,

?
−→1, s

0
1) ,

S2 = (In,Out,Gen2,Obs2,
!
−→2,

?
−→2, s

0
2) .

A binary relation R ∈ Obs1 ×Obs2 constitutes a bisimulation on observers
of S1 and S2 if (s1, s2) ∈ R implies that:

whenever s1
i?
−→S1 ∧ S1

o!
−→s′1

then for some S2, s
′
2 also s2

i?
−→S2 ∧ S2

o!
−→s′2 and (s′1, s

′
2) ∈ R ,

and whenever s2
i?
−→S2 ∧ S2

o!
−→s′2

then for some S1, s
′
1 also s1

i?
−→S1 ∧ S1

o!
−→s′1 and (s′1, s

′
2) ∈ R .

Now let R be the largest of such relations ordered by inclusion. We say that
observers s1, s2 are equivalent, written s1 ∼ s2, if (s1, s2) ∈ R. Finally we
say that IOATSs S1,S2 are equivalent, written S1 ∼ S2, iff s

0
1 ∼ s

0
2.

102 Color-blind Semantics for Environments

Let B1 be an endofunction on binary relations on observers of S1 and S2, such that

B1(R) = {(s1, s2) | (∀i, S1, o, s
′
1.∃S2, s

′
2.s1

i?
−→S1 ∧ S1

o!
−→s′1

⇒ s2
i?
−→S2 ∧ S2

o!
−→s′2 ∧ (s′1, s

′
2) ∈ R)

∧(∀i, S2, o, s
′
2.∃S1, s

′
1.s2

i?
−→S2 ∧ S2

o!
−→s′2

⇒ s1
i?
−→S1 ∧ S1

o!
−→s′1 ∧ (s′1, s

′
2) ∈ R)} (5.3)

Proposition 5.6. A binary relation R constitutes a bisimulation between observers
of two IOATSs S1 and S2 iff R ⊆ B1(R).

Proposition 5.7. B1 is a monotone endofunction on a complete lattice of binary
relations ordered by inclusion.

By Tarski’s fixpoint theorem B1 has the greatest fixpoint and the simulation relation

6 of Def. 5.2 equals this greatest fixpoint, which justifies the correctness of our

definition.

We shall distinguish the actual systems and the environments, in which
they operate. Environments are free in choice of inputs, while systems inde-
pendently determine the outputs they produce. A system S = (InS ,OutS ,

GenS ,ObsS ,
!
−→S ,

?
−→S , sS) operates embedded in some environment E = (InE ,

OutE ,GenE ,ObsE ,
!
−→E ,

?
−→E , sE). Systems always begin execution in an ob-

server state, so sS ∈ ObsS , while environments always begin execution in a
generator state, so sE ∈ GenE . A system S is compatible with an environ-
ment E if InS = OutE and OutS = InE .
Composition of a system and an environment is defined in the usual way,

by synchronization on labels. The initial observer of the system is composed
with the initial generator of the environment. Due to the compatibility
requirement and input-enabledness of observers, the closed system is able to
advance for any input that can be generated by the environment.

E
i!
−→e s

i?
−→S

(E, s)−→(e, S)

e
o?
−→E S

o!
−→s

(e, S)−→(E, s)
(5.4)

For a closed system it is known, which of its states can be exercised by
the environment. A given environment may not be able to distinguish two
systems from each other, even though they are not identical. We capture this
using notions of relativized simulation and relativized bisimulation between
two systems embedded in the same context:

Definition 5.8. Consider three IOATSs: an environment E=(Out, In,Gen,

Obs,
!
−→,

?
−→, E0) and two systems: S1 = (In,Out,Gen1,Obs1,

!
−→1,

?
−→1, s

0
1) and

5.1 I/O Alternating Transition Systems 103

S2 = (In,Out,Gen2,Obs2,
!
−→2,

?
−→2, s

0
2). A Gen-indexed family of binary rela-

tions R : Gen→ P(Obs1 ×Obs2) is a relativized simulation if
(s1, s2) ∈ RE implies that:

whenever E
i!
−→e ∧ e

o?
−→E′

then whenever s1
i?
−→S1 ∧ S1

o!
−→s′1

then for some S2, s
′
2 also s2

i?
−→S2 ∧ S2

o!
−→s′2 ∧ (s′1, s

′
2)∈RE′ . (5.5)

Let R be the largest of such families of relations ordered by component-
wise inclusion. We say that an observer s2 simulates an observer s1 in the
generator E, written s1 6E s2, if (s1, s2) ∈ RE. The system S2 simulates
S1 in the context of E, written S1 6E S2, if s

0
1 6E0 s02.

Let S1, S2 and E be IOATSs defined as above. Let S2 be an endofunction on Gen-
indexed families of binary relations Gen → P(Obs1 × Obs2) such that S2(R

′
E) is

equal to the set of observer pairs satisfying property (5.5):

S2(R) = λE. {(s1, s2) | ∀i, o, e, E
′, S1, s

′
1.∃S2, s

′
2. s1

i?
−→S1 ∧ S1

o!
−→s′1

⇒ s2
i?
−→S2 ∧ S2

o!
−→s′2 ∧ (s′1, s

′
2) ∈ RE′} (5.6)

Proposition 5.9. A Gen-indexed family of binary relations R consitutes a rela-
tivized simulation iff R ⊆ S2(R) (where inclusion is defined component-wise: R ⊆ P
iff for all E ∈ Gen.RE ⊆ PE).

Proposition 5.10. S2 is a monotonic on the complete lattice of Gen-indexed famil-
lies of binary relations over Obs1 ×Obs2 ordered by component-wise inclusion.

By Tarski’s fixpoint theorem S2 has the greatest fixpoint equal to the relativized

simulation relation (6)E∈GenE of Def. 5.8, which justifies its correctness.

Definition 5.11. Consider three IOATSs: an environment E = (Out, In,

Gen,Obs,
!
−→,

?
−→, E0) and two systems S1 =(In,Out,Gen1,Obs1,

!
−→1,

?
−→1, s

0
1)

and S2 = (In,Out,Gen2,Obs2,
!
−→2,

?
−→2, s

0
2). A Gen-indexed family of binary

relations R : Gen→ P(Obs1 ×Obs2) constitutes a relativized bisimulation
on observers of S1 and S2 iff (s1, s2) ∈ RE implies that:

whenever E
i!
−→e ∧ e

o?
−→E′

then whenever s1
i?
−→S1 ∧ S1

o!
−→s′1

then for some S2, s
′
2 also s2

i?
−→S2 ∧ S2

o!
−→s′2 and (s′1, s

′
2) ∈ RE′ ,

and whenever s2
i?
−→S2 ∧ S2

o!
−→s′2

then for some S1, s
′
1 also s1

i?
−→S1 ∧ S1

o!
−→s′1 and (s′1, s

′
2) ∈ RE′ .

104 Color-blind Semantics for Environments

Let R be the largest of such families of relations ordered by component-wise
inclusion. We say that observers s1, s2 are equivalent with respect to a gen-
erator E, written s1 ∼E s2, if (s1, s2) ∈ RE. Systems S1,S2 are equivalent
in the context of E, written S1 ∼E S2, if s

0
1 ∼E0 s02.

The correctness of the construction follows in the same way as above. Just use the
function B2 instead of S2:

B2(R) = λE. {(s1, s2) | ∀i, o, e, E
′.E

i!
−→e ∧ e

o?
−→E′∧

(∀S1, s
′
1.∃S2, s

′
2.s1

i?
−→S1 ∧ S1

o!
−→s′1

⇒ s2
i?
−→S2 ∧ S2

o!
−→s′2 ∧ (s′1, s

′
2) ∈ RE′) ∧

(∀S2, s
′
2.∃S1, s

′
1.s2

i?
−→S2 ∧ S2

o!
−→s′2

⇒ s1
i?
−→S1 ∧ S1

o!
−→s′1 ∧ (s′1, s

′
2) ∈ RE′)} (5.7)

The two IOATSs on the left of Fig. 5.1, M and I, represent systems,
while the two on the right, E1 and E2, model environments. White states
are observers and gray states are generators. The signature sets for the
systems are In = {i1, i2, i3} and Out = {o1, o2, o3}. Assume that M is the
specification of the system, while I is an implementation. Under regular
simulation I does not conform toM: I 66M. I can produce o1 in reaction
to i2, whichM does not allow. However M simulates I if executed in the
context of E1, because E1 cannot execute parts of the systems that differ:
I 6E1 M. The environment E2 is more demanding than E1 as it can actually
detect that I does not conform, by producing i2 and observing the reaction,
so I 66E2 M. Also note that systemsM and I are equivalent in environment
E1: I ∼E1 M, and not under E2: I 6∼E2 M.
The notion of relativized simulation (bisimulation) was originally intro-

duced by Larsen in [69, 70] for ordinary labeled transition systems and used
as the basis for a compositional proof methodology [73]. An E-relativized
simulation between two systems s1 and s2 is closely related to an ordinary
simulation between the corresponding closed systems (E, s1) and (E, s2).
However, whereas the interactions of E with s1 and s2 are identical for rel-
ativized simulation (by its very definition), E may interact with s1 and s2

E1:I:M: E2:

i1!
o2?

o1?

o3?

i3?

i1?

i2?
o3!

o1!
i3?

i1?

i2?

o2!

o3! o2?

o1?

o3?

i2!
i1!

Figure 5.1: SystemsM and I and environments E1, E2

5.2 Color-blind I/O-alternating Transition Systems 105

in two radically different ways in order to establish a simulation between
(E, s1) and (E, s2). In general, relativized simulation is a stronger relation-
ship than simulation between closed systems; for deterministic environments
the two notions coincide. Crucially, for our methodology, the notion of rela-
tivized simulation provides a simple (to state but not to prove) and elegant
characterization of the discriminating power of environments (theorem 5.24)
allowing for easy comparison and combination of environmental behavioral
constraints.

5.2 Color-blind I/O-alternating

Transition Systems

In the previous section we have presented a basic setup for specifying systems
and environments together with their composition. We were able to state
that two systems are equivalent with respect to a certain context if this
context cannot activate their incompatible parts. However, in industrial
development, it often happens that the environment cannot distinguish two
systems, not because it makes incompatible parts unreachable, but because
its ability to distinguish the different outputs it observes might be more or
less limited depending on its actual state. For instance two outputs of the
system may in some of its variants be connected to a single physical actuator.
In such case the environment, being a model of the hardware in this case,
will treat the two outputs as identical, allowing for powerful optimizations
when generating code for this specific type of hardware. For this particular
example, the distinguishing capability of the environment is clearly static
and hence the specification of code optimization is realizable using simple
process algebraic operations such as relabeling and hiding. However, in
general environmental restrictions are dynamically changing (examples in
chapter 6), and cannot be modeled using relabeling and hiding, which are
both static operators and affect all transitions of the system regardless of
the dynamics of environment.

To give a proper treatment of such situations we need to relax the equiv-
alence of labels in relativized simulation (bisimulation), from equality to
something weaker. We shall label observation transitions of environments
with sets of inputs called observation classes. An observation transition can
be taken in presence of any of the inputs in the set labeling it.

Definition 5.12. A color-blind I/O alternating transition system is a tuple

E = (In,Out,Gen,Obs,
!
−→,

?
−→, E0), where In is a set of inputs, Out is a set

of outputs, Gen denotes a finite set of generators, Obs denotes a finite set of

color-blind observers,
!
−→ ⊆ Gen×Out×Obs is the generation relation and

?
−→ ⊆ Obs× P(In)× Gen is the color-blind observation relation. The initial

106 Color-blind Semantics for Environments

state is a generator: E0 ∈ Gen.

A color-blind environment E = (InE ,OutE ,GenE ,ObsE ,
!
−→E ,

?
−→E , E) and

a usual IOATS S = (InS ,OutS ,GenS ,ObsS ,
!
−→S ,

?
−→S , s) are compatible if

they have matching signatures: InE = OutS ∧OutE = InS . Since we only
consider compatible systems and environments, we fix the meaning of the
input and output, choosing the system’s perspective. We will denote the set
of inputs of the system by In. Consequently In is actually the set of outputs
of the environment. Similarly Out is the set of outputs of the system but
the set of inputs for the environment. Single input will be denoted by i,
single outputs by o, and classes of outputs by capital O. We shall continue

to write E
i!
−→e instead of (E, i, e) ∈

!
−→ and e

O?
−−→E instead of (e,O,E) ∈

?
−→.

Composition is defined for compatible systems and environments. A
compatible environment-system pair forms a closed system, which takes
transitions synchronously. Synchronization is no longer equality based:

E
i!
−→e s

i?
−→S

(E, s)→ (e, S)

S
o!
−→s e

O?
−−→E o ∈ O

(e, S)→ (E, s)
(5.8)

We require that the observers in color-blind IOATS are deterministic
and input enabled, so they deterministically react to every possible input.
This implies that the observation classes on the transitions outgoing from a
single state form a partitioning of inputs into equivalence classes. Formally
for each observer e:

∀O1, O2 ⊆ Out.∀E1, E2 ∈ Gen. e
O1?
−−→E1 ∧ e

O2?−−→E2

⇒ O1 ∩O2 = ∅ ∨ (O1 = O2 ∧E1 = E2)

∀o ∈ Out.∃O ⊆ Out.∃E ∈ Gen.e
O?
−−→E ∧ o ∈ O. (5.9)

In addition we require that the generation relation is deterministic. For each
generator E:

∀i ∈ In.∀e1, e2 ∈ Obs.E
i!
−→e1 ∧E

i!
−→e2 ⇒ e1 = e2. (5.10)

Note that determinism in the above sense does not limit the freedom of the
environment in choosing inputs. It means that the input chosen uniquely
determines the target state of the environment.
Consider a blind environment B with two states, a generator B and an

observer b, which has a generation transition from B to b for every input i
and a single observation transition from b to B labeled by Out. Intuitively
B can execute all parts of the system, but does not really care about the
responses it gets:

∀i ∈ In. B
i!
−→b and b

Out?
−−−→B .

5.2 Color-blind I/O-alternating Transition Systems 107

A perfect vision environment V consists of a generator V and an observer
v. V carefully observes all the outputs received from the system:

∀i ∈ In. V
i!
−→v and ∀o ∈ Out. v

{o}?
−−−→V .

In order to assert correctness of specialization of a system with respect
to the possible execution scenarios, we need a notion of a context-dependent
conformance between the original and the specialized system. We enrich our
previous definition of relativized simulation and bisimulation to accommo-
date the color-blindness of environments.

Definition 5.13. Let E=(Out, In,Gen,Obs,
!
−→,

?
−→, E0) be a color-blind en-

vironment and S1 = (In,Out,Gen1,Obs1,
!
−→1,

?
−→1, s

0
1) and S2 = (In,Out,

Gen2,Obs2,
!
−→2,

?
−→2, s

0
2) be two systems. A Gen-indexed family of binary

relations R : Gen→ P(Obs1 ×Obs2) constitutes a relativized simulation iff
(s1, s2) ∈ RE implies that

whenever E
i!
−→e ∧ e

O?
−−→E′

then whenever s1
i?
−→S1 ∧ S1

o1!
−−→s′1 ∧ o1 ∈ O

then for some S2, o2, s
′
2 also s2

i?
−→S2 ∧ S2

o2!−−→s′2

∧ o2 ∈ O and (s′1, s
′
2) ∈ RE′ .

Let R be the largest of such families of relations ordered by component-wise
inclusion. An observer s2 simulates an observer s1 in the context of gen-
erator E, written s1 6E s2, if (s1, s2) ∈ RE. An IOATS S2 simulates an-
other IOATS S1 in the context of a compatible color-blind IOATS E, written
S1 6E S2, iff s

0
1 6E0 s02.

Let S1, S2 be IOATSs and E be a color-blind IOATS compatible with them (as
in the above definition). Let S3 be an endofunction on a Gen-indexed families of
binary relations of type Gen→ P(Obs1,Obs2) such that:

S3(R) = R′, where

R′ = λE.{(s1, s2) | ∀i, e, O,E
′. ∀i, S1, o1, s

′
1. ∃S2, o2.

E
i!
−→e ∧ e

O?
−−→E′ ∧ s1

i?
−→S1 ∧ S1

o1!−−→s′1 ∧ o1 ∈ O

⇒ s2
i?
−→S2 ∧ S2

o2!−−→s′2 ∧ o2 ∈ O ∧ (s′1, s
′
2) ∈ R

′
E} .

Proposition 5.14. A Gen-indexed family of binary relations R constitutes a rela-
tivized simulation with respect to a color-blind IOATS iff R ⊆ S3(R) (where inclu-
sion is defined component-wise).

108 Color-blind Semantics for Environments

Proposition 5.15. S3 is a monotonic endofunction on the complete lattice of Gen-
indexed famillies of binary relations over Obs1 × Obs2 ordered by component-wise
inclusion.

It follows from Tarski’s fixpoint theorem that S3 has the greatest fixpoint, which is

equal to the relativized simulation relation of Def. 5.13 justifying the correctness of

our definition.

Definition 5.16. Let E=(Out, In,Gen,Obs,
!
−→,

?
−→, E0) be a color-blind en-

vironment and S1 = (In,Out,Gen1,Obs1,
!
−→1,

?
−→1, s

0
1) and S2 = (In,Out,

Gen2,Obs2,
!
−→2,

?
−→2, s

0
2) be two systems. A Gen-indexed family of binary re-

lations R : Gen→ P(Obs1 ×Obs2) constitutes a relativized bisimulation iff
(s1, s2) ∈ RE implies that

whenever E
i!
−→e ∧ e

O?
−−→E′

then whenever s1
i?
−→S1 ∧ S1

o1!−−→s′1 ∧ o1 ∈ O

then for some S2, o2, s
′
2 also s2

i?
−→S2 ∧ S2

o2!
−−→s′2

∧ o2 ∈ O and (s′1, s
′
2) ∈ RE′ ,

and whenever s2
i?
−→S2 ∧ S2

o2!
−−→s′2 ∧ o2 ∈ O

then for some S1, o2, s
′
1 also s1

i?
−→S1 ∧ S1

o1!
−−→s′1

∧ o1 ∈ O and (s′1, s
′
2) ∈ RE′ .

Let R be the largest of such families of relations ordered by component-wise
inclusion. Observers s1, s2 are equivalent in the context of generator E,
written s1 ∼E s2, if (s1, s2) ∈ RE. Two IOATS S1,S2 are equivalent in the
context of a compatible color-blind IOATS E, written S1 ∼E S2, iff s

0
1 ∼E0 s02.

The correctness argument follows the standard pattern employing the B3 function:

B3(R) = λE. {(s1, s2) | ∀i, O, e, E
′.E

i!
−→e ∧ e

O?
−−→E′∧

(∀o1, S1, s
′
1.∃S2, s

′
2, o2.s1

i?
−→S1 ∧ S1

o1!
−−→s′1 ∧ o1 ∈ O

⇒ s2
i?
−→S2 ∧ S2

o2!−−→s′2 ∧ o2 ∈ O ∧ (s′1, s
′
2) ∈ RE′) ∧

(∀o2, S2, s
′
2.∃S1, s

′
1, o1.s2

i?
−→S2 ∧ S2

o2!
−−→s′2 ∧ o2 ∈ O

⇒ s1
i?
−→S1 ∧ S1

o1!−−→s′1 ∧ o1 ∈ O ∧ (s′1, s
′
2) ∈ RE′)} (5.11)

Color-blind IOATSs are a conservative extension of the usual (deter-
ministic) IOATSs from the previous section. Any deterministic IOATS can

5.2 Color-blind I/O-alternating Transition Systems 109

be translated into a color-blind IOATS, by turning labels on observation
transitions into singleton sets. In the same sense our new relativized simula-
tion (bisimulation) is a conservative extension of the one from the previous
section (applied to deterministic IOATSs).

Even though we initially postulated that execution contexts usually do
not exercise all possible traces of the system, we will now require that envi-
ronments can always produce all the possible system inputs from In. This
requirement surprisingly does not defeat our initial goal. We can direct all
the transitions producing impossible system inputs to the observer b and
embed the blind environment B in every environment model. Instead of
specifying that the environment cannot produce i, we state that i can be
produced, but the environment does not care about the behavior of the sys-
tem afterward. Proposition 5.17 formally states that the system’s behavior
is irrelevant once the environment turns blind.

Proposition 5.17. Let S1 and S2 be two IOATSs of the same signature
and B be a color-blind environment compatible with them (defined as above).
For any two observers s1 ∈ Obs1 and s2 ∈ Obs2 it holds that s1 ∼B s2 and
consequently S1 6B S2.

Proof. It suffices to show that R = λB. Obs1×Obs2 is a B-relativized bisimulation
relation, which follows from input-enabledness of S1 and S2 and from the fact that
the observation class of the only observation transition of B is the entire Out set.

Figure 5.2 presents two examples of environments that are compatible
with the systems of Fig. 5.1. Transitions from generators to the blind ob-
server b have been omitted, which will be our usual practice. There is one
such transition for each input–generator pair, for which the transition is not
drawn. Observe that the model M simulates the implementation I in the
environment F1 (I 6F1 M) not due to the fact that F1 is not able to exer-
cise the differing parts of the systems, as was the case for E1, but because
F1 cannot distinguish between the outputs (o1, o2) produced by I andM.
The almost identical color-blind environment F2 distinguishes I and M,
by observing the outputs o1 and o2 with two separate transitions. In fact
I ∼F1 M and I 6∼F2 M.

F1: F2:

i1!

{o3}?

i2!

{o3}?

{o1, o2}?

i1!

{o3}?

i2!

{o1}?

{o2}?

Figure 5.2: Color-blind environments F1,F2 compatible with systems M
and I: I 6F1 M, I 66F2 M, I ∼F1 M and I 6∼F2 M.

110 Color-blind Semantics for Environments

Relativized simulation and bisimulation are weaker than their nonrela-
tivized versions:

Proposition 5.18. Let S1=(In,Out,Gen1,Obs1,
!
−→1,

?
−→1, s

0
1) and S2 =(In,

Out,Gen2,Obs2,
!
−→2,

?
−→2, s

0
2) be two IOATSs and E = (Out, In,Gen,Obs,

!
−→,

?
−→, E0) be a color-blind IOATS: Let s1 and s2 be any two observers of S1

and S2 respectively and E be an arbitrary generator of E: E ∈ Gen. Then
s1 6 s2 implies s1 6E s2, and S1 6 S2 implies S1 6E S2. Similarly s1 ∼ s2
implies s1 ∼E s2 and S1 ∼ S2 implies S1 ∼E S2.

Proof. First show that R1 = λE.{(s1, s2) | s1 6 s2} constitutes an E-relativized
simulation on observers of S1 and S2 (follows directly from definition 5.13). Then
show that R2 = λE.{(s1, s2) | s1 ∼ s2} constitutes an E-relativized bisimulation
on observers of S1 and S2. The results on the IOATS level follow as immediate
corollaries.

Moreover the perfect vision environment V is the most discriminating
one. It can distinguish any systems different up to the usual simulation (so
relativized simulation is a conservative extension of def. 5.2 for deterministic
environments).

Proposition 5.19. For any two observers s1, s2 of systems S1 and S2, and
the generator V of the color-blind perfect-vision environment V compatible
with S1 and S2: s1 ∼ s2 ⇐⇒ s1 ∼V s2 and S1 ∼ S2 ⇐⇒ S1 ∼V S2.
Similarly s1 6 s2 ⇐⇒ s1 6V s2 and S1 6 S2 ⇐⇒ S1 ∼V S2.

Proof. First show that R = λV.{(s1, s2) | s1 ∼ s2} is a V-relativized bisimulation
on observers of S1 and S2, which follows directly from the definition. In order to
prove the other direction we need to show that ∼V constitutes a usual bisimulation
on observers of S1 and S2. Take s1 and s2 such that s1 ∼V s2. Considering the
definition of simulation (definition 5.2) take any two transitions of S1 such that

s1
i?
−→S1 ∧ S1

o!
−→s′1. Note that by definition of V we have V

i!
−→v and v

{i}?
−−−→V . And

then because of input enabledness and s1 ∼V s2 we can observe that s2
i?
−→S2 and

S2
o!
−→s′2 and s

′
1 ∼V s′2 (and vice-versa). So ∼V fulfills definition 5.2 and constitutes

a bisimulation on observers of S1 and S2. The result on the IOATS level follows as
a direct corollary. The proof of the simulation case is similar (and simpler).

With the above propositions we have hinted at the notion of discrimi-
nation—the ability of distinguishing systems from each other.

Definition 5.20. A color-blind environment F is more discriminating than
a color-blind environment E, written E v F , iff F distinguishes more pro-
cesses than E. Formally E v F iff ∀S1,S2.S1 6F S2 ⇒ S1 6E S2.

5.2 Color-blind I/O-alternating Transition Systems 111

Our blind environment B is the least discriminating in the sense that
it is unable to distinguish any two systems from each other by means of
relativized simulation. The perfect vision environment V is the most dis-
criminating (by propositions 5.18 and 5.19 as no other environment can
distinguish more systems).
The notion of discrimination will soon prove to be fundamental in our

developments. In the next section we shall use it to design composition op-
erators for behavioral properties. Those compositions shall later form the
fundamental part of our tool for designing product line architectures. Un-
fortunately our definition of the discrimination preorder is rather abstract.
Due to quantification over all possible systems, it is not possible to verify
it mechanically. To remedy this obstacle we introduce a new preorder on
environments: a simulation for color-blind environments.

Definition 5.21. Let E=(Out, In,GenE ,ObsE ,
!
−→E ,

?
−→E , E0) and F=(Out,

In,GenF ,ObsF ,
!
−→F ,

?
−→F , F 0) be color-blind environments. A pair of binary

relations, R1 ⊆ GenE ×GenF and R2 ⊆ ObsF ×ObsE , constitutes a simula-
tion between states of color-blind IOATSs iff (E,F) ∈ R1 implies that

whenever E
i!
−→e then for some f also F

i!
−→f and (f, e) ∈ R2 ,

and (f, e) ∈ R2 implies that whenever f
Of?
−−→F

then for some Oe, E also e
Oe?−−→E and Of ⊆ Oe and (E,F) ∈ R1 .

Let (R1, R2) be the largest such pair of relations (ordered by point-wise in-
clusion). A generator F simulates a generator E, written E 6 F , iff
(E,F) ∈ R1. An observer e simulates an observer f , written f 6 e, iff
(f, e) ∈ R2. An environment F simulates an environment E, written E 6 F ,
iff E0 6 F 0.

Consider two color-blind environments E = (Out, In,GenE ,ObsE ,
!
−→E ,

?
−→E , E0) and

F = (Out, In,GenF ,ObsF ,
!
−→F ,

?
−→F , F 0). Let S4 be an endofunction on pairs of

binary relations such that:

S4 : P(GenE ×GenF)×P(ObsF ×ObsE)→ P(GenE ×GenF)×P(ObsF ×ObsE)

S4(R1, R2) = (R′
1, R

′
2), where

R′
1 = {(E,F) | ∀i, e. ∃f. E

i!
−→e⇒ F

i!
−→f ∧ (f, e) ∈ R2}

R′
2 = {(f, e) | ∀Of , F. ∃Oe, E. f

Of ?
−−→F ⇒ e

Oe?
−−→E ∧ (E,F) ∈ R1} .

Proposition 5.22. A pair of relations (R1, R2) constitutes a simulation between
states of two color-blind IOATSs iff (R1, R2) ⊆ S4(R1, R2), where inclusion is in-
tepreted point-wise.

112 Color-blind Semantics for Environments

Proposition 5.23. S4 is a monotonic endofunction on the complete lattice of pairs
of binary relations over generators and observers (accordingly), ordered by point-
wise inclusion.

By Tarski’s fixpoint theorem S4 has the greatest fixpoint equal to the simulation

relation 6 of Def. 5.21, which justifies the correctness of our definition.

The simulation preorder can be checked mechanically for finite state
systems using state exploration techniques [20, 9]. Thanks to the following
central result, these techniques can also be used to verify discrimination
properties, as discrimination ordering and simulation ordering coincide for
our environments:

Theorem 5.24. For any two color-blind environments E and F :

E v F iff E 6 F .

Let us begin the proof with introducing an auxiliary definition of discrimination on
the state level:

Definition 5.25. Let E and F be two color-blind environments having the same
signatures and let E ∈ GenE , F ∈ GenF be two generators. We say that F is more
discriminating than E, written E v F , if for any two observers S1, S2 of any two
systems S1,S2 compatible with E and F it holds that S1 6F S2 implies S1 6E S2.

Lemma 5.26. Let E and F be two color-blind environments having the same sig-
natures. For any two color-blind generators E ∈ GenE and F ∈ GenF , with the
same I/O signature it holds that E 6 F ⇒ E v F .

Proof. Let S1 and S2 be two systems compatible with E and F . Assume that
E 6 F . We need to show that for any two observers s1, s2 of S1 and S2 respectively
s1 6F s2 implies s1 6E s2, or in other words (6F) ⊆ (6E). We shall show
this in two steps, first introducing a GenE -indexed family of relations R such that
(6F) ⊆ RE , and then arguing that RE is an E-relativized simulation, which implies
that it is included in relativized simulation component-wise, so RE ⊆ (6E) Let us
define R as follows:

R = λE. {(s1, s2) | ∃F
′ ∈ GenF .E 6 F ′ ∧ s1 6F ′ s2} . (5.12)

Clearly (6F) ⊆ RF , since E 6 F . Now take s1, s2 and E
′ such that (s1, s2) ∈ RE′ .

Let E′ i!
−→e′ and e′

Oe?
−−→E′′ and s1

i?
−→S1 and S1

o1!−−→s′1 and o1 ∈ Oe. We need to

find S2, o2, s
′
2 such that s2

i?
−→S2 and S2

o2!−−→s′2 and o2 ∈ Oe and (s′1, s
′
2) ∈ RE′′ .

But since (s1, s2) ∈ RE′ there must exists F ′ such that s1 6F ′ s2 and E 6 F ′.

The latter means that there exist f ′, Of , F
′′ such that F ′ i!

−→f ′ and f ′ Of ?
−−→F ′′ and

o1 ∈ Of ⊆ Oe and E
′′ 6 F ′′, which combined with the former implies that s2

i?
−→S2

and S2
o2!−−→s′2 and o2 ∈ Of ⊆ Oe. It remains to be shown that (s

′
1, s

′
2) ∈ RE′′ , which

follows from the definition of R, as E ′′ 6 F ′′.

5.2 Color-blind I/O-alternating Transition Systems 113

i1?

ik?

o!l(I, o) L(I, o)

Figure 5.3: A looping system L(I, o), for I = {i1, . . . , ik}

Lemma 5.27. Let E and F be two color-blind environments having the same I/O
signature. If E and F are generators of E and F respectively, then

E v F ⇒ E 6 F .

As a preparation for the proof let us define a looping system L(I, o). Let I
be a set of inputs, I ⊆ In, and o be a single output, o ∈ Out. Then let L(I, o)
denote a generator and l(I, o) denote an observer. In L(I, o) there is an observation
transition from l(I, o) to L(I, o) for every i ∈ I and a single generation transition

L(I, o)
o!
−→l(I, o).

Proof. We shall prove the contrapositive instead, i.e for all E ,F and their generators
E,F if E 66 F then also E 6v F , so there exist systems S1,S2 and their observers
s1, s2 such that s1 6F s2 but s1 66E s2.
Since E 66 F then there exists n such that E cannot cover the observation class

of F at the nth observation step. We shall proceed by induction on n.
1◦. if n = 1 then there exist input ik, observation class Of and observers e,f

such that E
ik !
−−→e and F

ik !
−−→f and f

Of !
−−→F ′, but for all transitions outgoing from e,

e
Oe?
−−→E′, we have that Of 6⊆ Oe. Because of this and the fact that the observation

classes of e form a partitioning ofOut (see (5.9)), there exist two distinct observation
classes O′

e, O
′′
e of e, such that O

′
e ∩Of 6= ∅ and O′′

e ∩Of 6= ∅. Let o′ be an arbitrary
element from O′

e ∩Of and similarly o
′′ ∈ O′′

e ∩Of . We shall now construct our two
systems S1 and S2. The idea is that the first steps of S1 and S2 differ insufficiently to
be distinguished by f , but sufficiently for e to distinguish them. In the subsequent
steps both systems behave identically. Let S1 just consist of l(In, o

′) and S2 be as
on Fig. 5.4. It is easy to observe that s1 6F s2, but s1 66E s2, which finishes the
proof for n = 1.
2◦. Inductive step. Now consider that n > 1 and E simulates F on all traces shorter
than n. In a similar manner as above we would like to construct two systems which
violate E-relativized simulation in the nth step on the very trace, on which E and
F disagree. On all other traces of length n, and all longer traces they should behave
identically. It should be intuitively visible that a construction similar to the one
presented above is applicable.
More formally our new systems can be constructed inductively. Consider the

prefixes of the execution witnessing E 66 F : E
ik !
−−→e,e

Oe?
−−→E′ and F

ik !
−−→f ,

f
Of ?
−−→F ′. Since n > 1, Of ⊆ Oe and there exists a trace witnessing violation

of simulation between E′ and F ′ in n− 1 steps. By the induction hypothesis there

114 Color-blind Semantics for Environments

i1?

ik?

o′!l(In, o′) L(In, o′)

S1 : S2 :

ik?

i1?

ik−1?

o′!

o′′!
S1

Figure 5.4: Counter example systems S1 and S2 drawn assuming that
In = {i1, . . . , ik}. Note that the proof does not rely on In being finite; k
is just a notational convention, to ease the presentation.

ik?

i1?

ik−1?

o!
S′

1

L(In, o)

ik?

i1?

ik−1?

o!
S′

2

L(In, o)

S1 : S2 :

Figure 5.5: Systems S1 and S2 created in the inductive step of the proof of
lemma 5.27. Again the drawing assumes that In = {i1, . . . , ik}, but finiteness
of In is rather a notational convention than an actual need.

exist systems S ′1 and S
′
2 and states thereof S

′
1 and S

′
2 such that S

′
1 6F S′

2 and
S′

1 66E S′
2. We create a new pair of systems S1 and S2 by adding new initial ob-

servers s1, s2 and generators S1, S2 with transitions s1
ik?
−−→S1,S1

o!
−→s′1 and s2

ik?
−−→S2,

S2
o!
−→s′2, where o ∈ Of ⊆ Oe and s

′
1 and s

′
2 are the initial states of S

′
1 and S

′
1. Both

for s1 and s2 we also add transitions for all inputs different than ik to l(In, o). See
Fig. 5.5. It is not hard to see that s1 6F s2, but s1 66E s2, which finishes the
proof.

Theorem 5.24 follows as a corollary from the above two lemma lifted to the

IOATS level.

5.3 Composition of Behavioral Properties

The environment model can be used as an additional source of information
for an optimizing code generator. Typical code generators do not use any
information about the environment, assuming that the model is combined
with the perfect vision environment V. Another extreme would be a code
generator requiring a precise model of the environment—definitely a sig-
nificant burden for many engineers. To remedy the problem we propose
light-weight, composable, partial specifications of environments. Examples
of such properties could be: that certain events always come interleaved (like
on/off switch), or that there is some causality between a certain input and

5.3 Composition of Behavioral Properties 115

output (a timer only timeouts after it has been started). Each of such prop-
erties can be expressed as a simple color-blind environment IOATS. Our
goal now is to show how such partial descriptions can be composed.
As said before, every observer e of a color-blind IOATS induces a par-

titioning of Out into observation classes. Let us denote this partitioning by
Pe. The set of all equivalence relations (and hence the set of all partition-
ings) over Out, ordered by inclusion, forms a complete lattice. Consequently
for any set of partitionings {Pk}k∈L there exist the greatest lower boundd
k∈L Pk, which is the coarsest partitioning finer than any of Pk and the
least upper bound

⊔

k∈L Pk, which is the finest partitioning coarser than all
Pk.
The composition is defined for environments with the same I/O sig-

natures. We consider two kinds of composition: a sum and a product.
Sums intuitively correspond to disjunction of properties (or sums in CCS
[94]). Products correspond to conjunctions (or synchronous composition in
CSP [52]).

E1
i!
−→e1 . . . En

i!
−→en

n
∑

k=1

Ek

i!
−→

n
∏

k=1

ek

SG (5.13)

E1
i!
−→e1 . . . En

i!
−→en

n
∏

k=1

Ek

i!
−→

n
∑

k=1

ek

PG (5.14)

O∈
nd

k=1

Pek
E={E|∃1≤k≤n.∃O′⊆Out.ek

O′?
−−→E ∧ O⊆O′}

n
∏

k=1

ek

O?
−−→

∑

E

PO (5.15)

O∈
n
⊔

k=1

Pek
E = {E|∃1≤k≤n.∃O′ ⊆ O.ek

O′?
−−→E}

n
∑

k=1

ek

O?
−−→

∏

E

SO (5.16)

The result of a composition is a well-formed color-blind IOATS (consisting
of the same signature as the composed parts, and all states reachable by
the above given rules). This can be argued using rule induction, checking
that each generator created is deterministic and input-enabled, and that
observation classes on all transitions are deterministic (non-overlapping) and
non-blocking (complete). The sum is naturally lifted to the entire IOATSs
with the same signatures.
The first two rules, for the sum of generators (SG) and for the product

of generators (PG) are very simple, due to the determinism and input-
enabledness of our generators. All generators in {Ek}

n
k=1 can generate any

116 Color-blind Semantics for Environments

i ∈ In. The composition is synchronous: all environments are taking the
step simultaneously. From the system’s perspective a single i is generated.
The observer rules are more complex, due to the determinisation per-

formed on-the-fly. Consider the product of observers (PO) first. The obser-
vation classes O of the composed environment will be finer than observation
classes of any of the composed processes. Whenever any o is observed by
the result of the composition we advance to the state E composed of states
reachable by o from all ek’s. Since O is finer than some class in any of these
observers there is always exactly n such generators to be reached in E.
Dually in the sum of observers (SO) observational classes are coarser than

classes of any of the composed processes. The transition relation follows to
those generators that can be reached by any output belonging to such an
extended class. The size of E can be bigger than the number of original
observers n.
Our compositions enjoy this essential property:

Theorem 5.28. The sum of environments {E}nk=1 is the least environment,
which simulates all summands. The product of environments {E}nk=1 is the
greatest environment, which is simulated by all the factors.

Proof. We shall show the theorem on the state level (the result on the IOATSs level
follows directly). First show that ∀k = 1 . . . n. Ek 6

∑n

k=1Ek . This is in fact the
case because the product of observers creates observation classes which are always
subsets of original classes (partitioning of the original classes). More formally it can
be argued by showing that the pair of relations (R1, R2), defined as below forms a
simulation on environments:

R1 =

{(

Ej ,
∑

k∈I

Ek

)

| for any finite I and generators {Ek}k∈I and j ∈ I

}

R2 =

{(

∏

k∈I

ek, ej

)

| for any finite I and observers {ek}k∈I and j ∈ I

}

(5.17)

It remains to show that for all such generators F that ∀k = 1 . . . n. Ek 6 F , it
holds that also

∑n

k=1 Ek 6 F . This in turn is achieved by showing that the pair of
relations (R3, R4) forms a simulation on environments, where:

R3 =

{(

∑

k∈I

Ek , F

)

| ∀ finite I. ∀{Ek}k∈I . ∀F. ∀k ∈ I.Ek 6 F

}

R4 =

{(

f,
∏

k∈I

ek

)

| ∀ finite I. ∀{ek}k∈I . ∀f.∀k ∈ I. f 6 ek

}

(5.18)

The proof of the case for products of generators is dual.

Since discrimination and simulation coincide (theorem 5.24) this property
could be rewritten using v instead of 6: The sum of environments is the

5.3 Composition of Behavioral Properties 117

i 3
!

i2!

i1!

{o
4
}?

{o
3
}?

{o
2
}?

{o
1
}?

i 3
!

{
o
4 }

?

{
o
3 }

?

{
o
2 }

?

{
o
1 }

?

i1!

{o4}?

{o3}?
{o1, o2}?

i2!

i3!

Figure 5.6: Properties Interleave i1 i2 and Equiv o1 o2 as environments.
In = {i1, i2, i3}, Out = {o1, . . . , o4}.

i2!

i1!

{o
4
}?

{o
3
}?

{o
1
,
o
2
}?

{o
4
}?

{o
1
,
o
2
}?

{o
3
}?

i 3
!

i 3
!

{o
4
}?

{o
3
}?

{o
2
}?

{o
1
}?

{o4}?
{o3}?

{o1, o2}?

i1!

i2!

i3!

i 3
!

{o
1
}?

{o
2
}?

{o
3
}?

{o
4
}?

i 3
!

i1!

i2!

i1!

i2!

Figure 5.7: Product (left) and sum (right) of environments of Fig. 5.6. The
product can only generate what both of the factors could generate and
distinguish only what both of them could distinguish. The sum can generate
what any of the summands could generate and observe what any of them
could observe. In particular o1 and o2 are distinguished in the traces for
which the Interleave property is preserved and not otherwise.

least discriminating environment, more discriminating than each of the sum-
mands. The product is the most discriminating environment, less discrim-
inating than each of the factors. The classes of environments defined by
two-way simulation (≶) form a complete lattice with the discrimination or-
dering. All environments in a single class are equally discriminating. The
blind environment B belongs to the bottom class in this lattice, while the
perfect vision environment V is a member of the top class. A sum of two en-
vironments is an environment that belongs to the least upper bound class of
classes containing the summands. Similarly the product is an environment
that belongs to the greatest lower bound class of classes containing the fac-
tors. With these properties our composition operators can become the basis
for disjunction and conjunction of behavioral properties in the specification
language for environments.

As an example, Figure 5.6, consider two color-blind environments. First,
Interleave i1 i2 saying that two inputs i1 and i2 always alternate. Another
interesting property is that two given outputs never can be distinguished by
the environment: Equiv o1 o2. Both properties are defined conservatively.
Interleave does not restrict anything in the ability of distinguishing outputs

118 Color-blind Semantics for Environments

or producing the third input i3. Equiv does not restrict the way in which
inputs are produced, only saying that o1 and o2 are always equivalent. These
two environments could be combined in the following ways:

[[Interleave i1 i2 ∧ Equiv o1 o2]] = [[Interleave i1 i2]]× [[Equiv o1 o2]] (5.19)

[[Interleave i1 i2 ∨ Equiv o1 o2]] = [[Interleave i1 i2]] + [[Equiv o1 o2]] (5.20)

The first environment (conjunction) is guaranteed to be the most discrimi-
nating environment less discriminating than both operands. It will only be
able to produce inputs in interleaved fashion and always consider o1 and
o2 equivalent. It can be used as a specification for optimization of a reac-
tive system, which is supposed to work in the environment exhibiting both
properties. The second environment (disjunction) is the least discriminat-
ing environment more discriminating than both operands. It can be used
as a specification for optimization of a reactive system, which is supposed
to operate correctly both in an environment exhibiting the interleave prop-
erty and in the environment exhibiting the equivalent property. Figure 5.7
demonstrates the results of both compositions.

5.4 Equivalence vs Refinement

A refinement relation states that one system implements parts of another
system’s functionality. An equivalence relation states that two systems im-
plement exactly the same behavior in some sense. Intuitively refinement
relations should serve the purpose of specialization better than equivalence.
By their very definition they state requirements for systems, which can be
seen as specializations/optimizations of other systems. At the same time
equivalences seem to require preservation of rich nondeterminism between a
model and its implementation (specialized variant), which is highly inconve-
nient for code generators. A compiler writer normally wants to choose one
way of implementing the underspecified behavior, instead of preserving all,
often exponentially many, possibilities.

Unfortunately many simple refinement relations do not preserve inter-
esting properties of the system, most notably deadlock freeness. In this
section we study preservation of deadlock freeness by relativized simulation,
two-way relativized simulation and relativized bisimulation for IOATSs, em-
phasizing one strength of color-blindness, namely that color-blind relativized
bisimulation not only behaves well (preserves deadlock properties), but also
allows applications typical for refinement relations.

An execution of a given IOATS S is a sequence of transitions that can
be taken according to the transition relations of S.

Definition 5.29. Let S = (In,Out,Gen,Obs,
!
−→,

?
−→, s0). An execution from

5.4 Equivalence vs Refinement 119

observer s0 is a sequence of transitions:

s0
i1?
−−→s1 ∧ s1

o2!
−−→s2 ∧ s2

i3?−−→. . .
ln−1
−−−→sn . . . ,

such that all si ∈ Obs∪Gen, where all ik ∈ In and all ok ∈ Out. We say that
a given state s ∈ Gen ∪ Obs is reachable in S, if there exists an execution
from s0 containing s.

Note that if two states s1, s2 are in a simulation relation (s1 6 s2), then
all executions of s1 can be matched by s2 (meaning that sequences of I/O
labels extracted from executions are the same).
Let ⊥ be a distinct member of Out, denoting an empty output. We say

that an IOATS can deadlock, if there exists an execution such that after a
finite number of steps, it will generate ⊥ forever, no matter what inputs are
arriving from the environment.

Definition 5.30. We say that a given state s of an IOATS S is a deadlock
state if all outputs of all possible executions from s are ⊥. We say that S
can deadlock if it has a reachable deadlock state.

An IOATS that cannot deadlock is said to be deadlock-free. Deadlock
freeness is one of the fundamental requirements usually enforced on high
reliability software. It can be easily shown that simulation does not preserve
deadlock freeness, i.e. it is possible that a deadlock-free system S2 is refined
by a deadlocking system S1. Figure 5.8 presents a relevant counter example:
S1 6 S2, but S1 can deadlock, while S2 is deadlock free.
The property of deadlock freeness can be relativized in a straightforward

way. A system S is deadlock-free relative to an environment E (non color-
blind), if it cannot deadlock, while executed in E , i.e. there is no reachable
observer state, such that any execution starting in it will only produce ⊥ as
a reply to inputs produced by E .

Definition 5.31. An execution of observer s0 relative to a generator E0 is
a sequence of pairs of transitions:

(s0, E0)
i1−−→(S1, e1) ∧ (S1, e1)

o2−−→ . . . ln−−→(sn, en) ∧ (sn, en)
ln+1
−−−→ . . .

taken according to rules (5.4). We say that a given observer s′ ∈ ObsS
is reachable in E if there exists a generator E ′ ∈ GenE and an execution
fragment from (s0, E0) containing (s′, E′).

E :S1 : S2 : F :
⊥?

o?

i!

⊥!

i?

⊥!

o!

i?

{⊥}?

{o}?

i!

Figure 5.8: Counter example demonstrating that simulation does not pre-
serve deadlock freeness. In = {i}, Out = {⊥, o}.

120 Color-blind Semantics for Environments

Definition 5.32. A system S can deadlock in an environment E, if there
exists an observer s ∈ ObsS and a generator E ∈ GenE , such that (s,E) is
reachable, and all labels on all executions of s in E only contain inputs and
the empty output ⊥.

A system, which can deadlock in general, may not be able to deadlock
in a specific environment, if its deadlock state is not reachable in this envi-
ronment. Relativized simulation does not preserve deadlock freeness, either.
Consider environment E on Fig. 5.8: S1 6E S2 and S2 is deadlock free in E ,
while S1 can deadlock in E .
Let us attempt to formalize deadlock freeness in the color-blind setting.

A system S can deadlock weakly in a given color-blind environment E , if
execution in this environment can reach a state, such that all subsequent
outputs will be observed by the environment in the same class as the empty
output ⊥. A system can deadlock strongly if it can reach a state, such that
all subsequent outputs will be observed by the environment in the same class
as the empty output ⊥ and always infinitely many of those classes will be
strictly smaller than Out.

Definition 5.33. An execution of observer s0 relative to a color-blind gen-
erator E0 is a sequence of pairs of transitions:

(s0, E0)
i1−−→(S1, e1) ∧ (S1, e1)

(o2,O2)
−−−−−→ . . . ln−−→(sn, en) ∧ (sn, en)

ln+1
−−−→ . . . ,

where ok ∈ Ok for even values of k. The transitions are taken according
to the rules of (5.8). We say that a given observer s′ ∈ ObsS is reachable
in E if there exists a generator E ′ ∈ GenE and an execution from (s0, E0)
containing (s′, E′).

Definition 5.34. A system S can weakly deadlock in a color-blind environ-
ment E, if there exists an observer s ∈ ObsS and a color-blind generator
E ∈ GenE , such that (s,E) is reachable, and all labels on all executions of s
in E only contain inputs or output pairs (o,O) such that ⊥ ∈ O.

Definition 5.35. A system S can deadlock strongly in E, if there exists an
observer s ∈ ObsS and a color-blind generator E ∈ GenE , such that (s,E)
is reachable, and all labels on all executions of s ∈ E only contain inputs
or output pairs (o,O) such that ⊥ ∈ O and at least one of these executions
contains infintely many labels where O 6= Out.

We distinguish respectively weakly deadlock-free and strongly deadlock-
free systems. Strongly deadlock-free systems are of greater interest, as due
to our ubiquitous incorporation of the blind environment, all systems can
weakly deadlock in almost every interesting environment.
Color-blind relativized simulation does not preserve deadlock freeness ei-

ther. System S2 of Fig. 5.8 is deadlock-free in F (both weakly and strongly),
whereas S1 deadlocks in F (both weakly and strongly). At the same time
S1 6F S2.

5.4 Equivalence vs Refinement 121

Corollary 5.36. None of the definitions of simulation presented in this
chapter preserve deadlock freeness.

A common and simple equivalence relation on systems is two-way sim-
ulation: S1 ≶ S2 ⇐⇒ S1 6 S2 ∧ S2 6 S1. It is a standard result that
two-way simulation does not preserve deadlock freeness.

Proposition 5.37. None of the two-way simulations (usual,color-blind,
relativized) based on simulations presented in this chapter preserve deadlock
freeness.

Proof. Fig. 5.9 shows the counter example: S1 ≶ S2, but S2 is deadlock free, while
S1 can deadlock. Environments E and F form parts of a counter example for the
relativized and relativized color-blind versions respectively.

Not very surprisingly (relativized) bisimulation preserves deadlock free-
ness as we had defined it. As the result is fairly standard we only state it in
the relativized form:

Proposition 5.38. Let S1,S2 be two IOATSs and E be a color-blind IOATSs,
such that S1 ∼E S2. If S2 is weakly deadlock free relative to E, then also S1

is weakly deadlock-free relative to E. If S2 is strongly deadlock-free relative
to E then so is S1.

Proof. Let us consider strong deadlock freeness first. Assume that S1 ∼SS S2 and
S2 is deadlock free, while S1 is not. This means that there exists a reachable pair
(s1, E) ∈ Obs1 × GenE such that all executions of s1 in E only produce outputs
observed in the same class as ⊥ and at least one of these paths contains infinitely
many observation classes strongly smaller than Out. But since S1 ∼SS S2 there
must be a reachable state s2 ∈ Obs2, such that the pair (s2, E) is reachable, and
s2 has to be able to match all outputs of s1 in the same observation classes. So it
nearly qualifies as a strongly deadlocking system. The question is whether there
exist an execution of s2 which would not deadlock (produce something visible in
other than the blind class of E). The answer is no. If it existed, s1 would have
to be able to match it and thus would not be a deadlocking state. As either
s1 is not deadlocking or s2 is deadlocking, our initial assumption was incorrect,
which shows that relativized bisimulation in a color-blind context preserves strong
deadlock freeness.

E : F :S1 : S2 :
i?

⊥!

o!

⊥?

o?

i!

{⊥}?

{o}?

i!

i?

⊥!

o!

⊥!

i?

i?

Figure 5.9: Counter example demonstrating that two way simulation does
not preserve deadlock freeness. In = {i}, Out = {⊥, o}.

122 Color-blind Semantics for Environments

The result for weak deadlock freeness follows a very similar reasoning (just drop
reservations about existence of the strong deadlocking path).

It is crucial that we can use a color-blind equivalence relation with its
nice properties in order to specify refinement of systems. In future we want
to provide algorithms, which decrease the size of the models (in the spirit
of refinement). The correctness of these algorithms, shall rely on relativized
bisimulation though, so they do not introduce deadlocks into systems.

5.5 Toward Engineering Design Languages

Until now we have proceeded under a strict assumption, namely that in-
puts and outputs of systems are atomic. This assumption does not hold
for any, but the very simplest, of the engineering design languages. Real-
istic languages describe systems producing more structured outputs: sets,
multisets, sequences or whole sequences of sets of atomic entities in a single
reaction. We shall study two kinds of these advanced systems.

Assume a finite set of environment events Event and a finite set of atomic
output actions Action. In order to be able to handle realistic languages we
need to instantiate our framework for a given reaction style. This includes
not only giving mappings from Event and Action to In and Out, but also
proposing a suitable representation for observation classes and computing
bounds on classes.

5.5.1 Set based

Let us begin with considering a variant of statecharts producing sets (see
table 2.1, first row). The set of abstract events In = Event, while the set of
abstract outputs contains all possible subsets of Action. The empty set is
the empty output:

In = Event Out = P(Action) ⊥ = ∅

Each global state s ∈ Σ× Store × History × Queue corresponds to a single
observer at the abstract level, while a new generator is added for each pair
of configurations (in practice it suffices to consider pairs of configurations
related in the global transition relation):

Obs = Σ× Store ×History×Queue

Gen = (Σ× Store ×History×Queue)2 (5.21)

Finally for every global transition s
e o
−−−→s′ at the model level (see rule 2.66,

page 32) we introduce a single observation transition s
e?
−→(s, s′) and a single

5.5 Toward Engineering Design Languages 123

generation transition (s, s′)
o!
−→s′ in the abstract IOATS. Remaining states

are not related.
These definitions allow us to use the framework of previous sections and

model environments for set producing statecharts as color-blind IOATSs.
Note though, that, since Out is a powerset now, observation classes are not
simply sets of outputs, but sets of subsets of Action. How should these
classes be specified and represented? How can we compute the greatest
lower bounds (glbs) and least upper bounds (lubs) on partitionings in this
domain to efficiently obtain sums and products of IOATSs?
Subsets of finite sets, such as Action, are conveniently described with

propositional formulæ. For each formula φ over variables representing ele-
ments of Action consider a corresponding set of its satisfiable assignments.
Each assignment describes a set of actions, or a single output. We can use
propositional formulæ instead of explicit enumerations as specifications of
observational classes. More importantly we can efficiently implement them
symbolically using BDDs.
We still need to make sure that classes represented on transitions leaving

from a single observer are indeed disjoint and form a partitioning (see (5.9)).
To achieve this we require that all corresponding formulæ are mutually ex-
clusive and that they add up to the complete universum. For a set of formulæ
φ1, . . . , φn labeling all distinct transitions outgoing from a single observer
state the following two conditions must hold:

∀i, j∈ {1..n}. i 6= j ⇒ φi ∧ φj ≡ false (5.22)

φ1 ∨ . . . ∨ φn ≡ true (5.23)

These conditions are feasible to verify computationally, especially easily us-
ing a BDD engine, or a SAT-solver.
Syntactically correct environments can be combined in sums and prod-

ucts using the operational rules presented in section 5.3. In particular the
rules for observers rely on the existence of glbs and lubs for partitionings.
These glbs and lubs exists (since all partitionings form a complete lattice
under inclusion). We still need to give an efficient way to compute them:

Proposition 5.39. Consider two equivalence relations ∼φ and ∼ψ defined
on P(Action), such that the observation classes of ∼φ are described by for-
mulæ φ1, . . . , φm and observation classes of ∼ψ are described by formulæ
ψ1, . . . , ψn. Then the equivalence relation ∼φ u ∼ψ is characterized by for-
mulæ: {φi ∧ ψj|i = 1 . . . m, j = 1 . . . n}.

Obviously some of the new observational classes may be empty, since
usually not all conjunctions are satisfiable. Unsatisfiable formulæ can be
eliminated since corresponding BDDs automatically reduce to false.
The lub of two equivalence relations is a transitive closure of the union of

these two relations. The computation of this transitive closure is realized by

124 Color-blind Semantics for Environments

E : F : E + F : E × F :

(¬a1)?

(a1)?

e2!

e1!

(¬a2)?

(a2)?

e2!

e1!

(¬a1 ∧ ¬a2)?

(¬a1 ∧ a2)?

(a1 ∧ ¬a2)?

(a1 ∧ a2)?

e2!

e1!

e2!

e1!

(true)?

Figure 5.10: Left: environments E and F , suitable for executing set-based
reactive systems. Right: the sum and product of E and F . Observational
classes computed according to propositions 5.39 (for sum) and 5.40 (for
product)

the classic Union-Find algorithm (see [66, section 2.3.3] or [21, chapter 21])
applied to the observation classes of both relations. Any two overlapping
classes should be merged until no more classes overlap. An overlapping
occurs if the conjunction of the two respective formulæ is satisfiable. A
union of the class represented by φ with a class represented by ψ corresponds
to replacement of the two formulæ with a disjunction φ ∨ ψ of the two.

Proposition 5.40. Let ∼φ, ∼ψ be equivalence relations on P(Action), such
that their observation classes are described by formulæ φ1, . . . , φm and
ψ1, . . . , ψn respectively. Then the equivalence relation ∼φ t ∼ψ is char-
acterized by formulæ computed using the Union-Find algorithm applied to
the set {φ1, . . . , φm, ψ1, . . . , ψn}, where two formulæ are unifiable, if their
conjunction is satisfiable, and disjunction is used as the union operation.

Figure 5.10 presents examples of environments with observational classes
represented by propositional formulæ together with their sum and product,
computed using the intersection and the union-find algorithm.
We remark, that nearly identical adaptation allows applications of our

framework to other set-based languages including many hardware descrip-
tion languages and synchronous languages [11].

5.5.2 Sequence based

Several development languages for reactive synchronous systems reveal an-
other output structure than sets. These languages, including Java Card [122]
and variants of hierarchical statecharts (like UML [98] state diagrams), de-
scribe systems whose single reaction consists of a sequence of actions, instead
of an unordered set.

In = Event Out = Action∗ ⊥ = 〈〉 (5.24)

How should color-blind environments be specified for such systems? How
can we compute the glbs and lubs on observational partitionings found in
the respective kind of color-blind IOATS?

5.5 Toward Engineering Design Languages 125

Similarly as in the set-based example, states of the actual system should
be related with generators and observers at the abstract level and the tran-
sition relation of the modeling language with the observation and generation
relations of our IOATS. The observation classes in the new IOATSs become
sets of sequences of actions. If two sequences are in the same class, then
they are considered equivalent by the environment. If we restrict ourselves
to classes that are regular languages, then we can use a classifier DFA to
describe the observation relation at each observer. A classifier DFA is a
deterministic finite automaton, which instead of accepting strings, classifies
them in groups.

Definition 5.41. A classifier DFA over alphabet A is a quadruple
c = (S,A, s,−→), where S is a finite set of states, A is a finite set of symbols,
s ∈ S is an initial state and (−→) ∈ S → A→ S is an input-enabled transi-
tion function, meaning that for every state s ∈ S it holds that
dom(−→(s)) = A (so −→(s) is a total function). We write s a

−→s′, instead
of −→(s)(a) = s′.

A classifier DFA interprets a sequence of alphabet inputs by consecu-
tively applying −→ to a state and the head of the input sequence obtaining
a new state and input sequence. An execution over a list of symbols is ab-
breviated with s σ

−→∗sn meaning s
σ1−−→s1

σ2−−→ . . .
σn−1
−−−−→sn−1

σn−−→sn, where
σi is the ith symbol in the sequence σ.

Definition 5.42. If c = (S,A, s,−→) is a classifier DFA then we say that
two sequences σ1, σ2 ∈ A

∗ are equivalent with respect to c if their executions
arrive at the same state: ∃s′. s σ1−−→∗s′ and s σ2−−→∗s′.

Note that equivalence with respect to a classifier is indeed an equiv-
alence relation and as such partitions the entire set of sequences A∗ in a
finite number of classes. The set of classes is isomorphic with the set of
reachable states of the classifier. We shall use classifier DFAs to represent

E : E × F :F : E + F :

a2

e1!

?

?

e2!

a1

a2

a1

a1

e1!

?

?

e2!
a2

a2

a1

a1

e1!

?

e2!

a2

e1!

?

e2!

a1

a1

?

?

a2

a2

?

a2

a2

a1

a1

Figure 5.11: Two color-blind environments compatible with systems pro-
ducing sequences of actions, their sum and product, computed with the
algorithms of section 5.5.2.

126 Color-blind Semantics for Environments

the observation relation of color-blind environments observing sequences of
outputs.
For each classifier e = (Se,Action, se,−→e) consider γe : Se → Gen, a

total mapping of classifier’s states to generators. Each observer of the envi-
ronment is a pair consisting of a classifier and such a generator mapping. A
sequence of actions σ is first interpreted by e and then the generator mapping
γe translates the resulting class to the next generator state. Formally:

(e, γe)
{σ | se

σ
−→∗s} ?

−−−−−−−−−−−→γe(s) .

Fig. 5.11 presents two color-blind IOATS compatible with systems of
the following signature: Event = {e1, e2}, Action = {a1, a2}. Environ-
ment E distinguishes reactions containing at least one occurrence of a1 from
those sequences not containing a1 at all. Similarly F distinguishes between
sequences containing at least one a2 from those not containing a2 at all.
Observers are drawn as boxes containing classifier DFAs. Classifier tran-
sitions are represented as dotted arrows to distinguish them from IOATS
transitions.
Mechanical composition of such environments requires efficient ways of

computing lubs and glbs on partitionings represented as classifiers. Both
algorithms rely on the product construction:

Definition 5.43. Let e = (Se, A, se,−→e) and f = (Sf , A, sf ,−→f) be classi-
fiers. A product of e and f is a classifier e⊗ f = (Se × Sf , A, (se, sf),−→),
where (se, sf)

a
−→(s′e, s

′
f) if se

a
−→s′e and sf

a
−→s′f .

In practice unreachable states can be removed from the product.
The following proposition shows how computation of product of ob-

servers in rule (PO), section 5.3, is reduced to computing products of clas-
sifiers in this case:

Proposition 5.44. Let ∼e and ∼f be two equivalence relations on Action
∗

induced by classifiers e and f respectively. The greatest lower bound of the
two relations ∼e u ∼f exists and is induced by the product e⊗ f .

Consider the example of Fig. 5.11 again. The sum of the two envi-
ronments, E + F , is computed according to operational rules of section 5.3
(SG,PO) and the algorithm for glb of relations presented above. In par-
ticular the sum gives raise to an observer that distinguishes 4 classes of
sequences: empty sequence, sequences consisting only of occurrences a1,
sequences containing only occurrences of a2 and sequences containing oc-
currences of both a1 and a2.
The least upper bound of two partitionings ∼e t ∼f is usually computed

using a Union-Find algorithm, which unifies any two overlapping classes,
until all classes are disjoint. In our case classes are represented by states in

5.5 Toward Engineering Design Languages 127

the classifiers e and f . We need to apply the algorithm to states of e and
f , ultimately producing a classifier, whose states are sets of states of f and
e. The two classes s1 and s2 overlap, whenever there is an output sequence,
that can advance one classifier to a state in s1, and the other classifier to
a state in s2. The initial set of classes is given by reachable states of the
product classifier e⊗ f :

i. S := {{ei, fj} | (ei, fj) is reachable in e⊗ f}.

ii. If there exist s1, s2 ∈ S such that s1∩ s2 6= ∅ then S := (S \ {s1, s2})∪
{s1 ∪ s2}.

iii. Repeat (ii) until no more classes can be unified.

The final value of S is the set of states of the new classifier DFA. The
initial state is the class that contains initial states of e and f (note that
both of them will be in the same class). The transition function −→ is a sum
of transition functions −→e and −→f lifted to sets of states. For s1, s2 ∈ S:
s1

a
−→s2 if ∃.p ∈ s1.∃p

′ ∈ s2.p
a
−→e p

′ ∨ p a
−→f p

′. The following proposition
claims that this function is well-defined, deterministic, and input-enabled:

Proposition 5.45. Let s1, s2 ∈ S be any two of the sets of states (not nec-
essarily distinct) constructed with the above algorithm. Then for any states
p1, p2 ∈ s1, p

′
1, p

′
2 ∈ s2 of the original classifiers and any symbol a: p1

a
−→1 p

′
1

and p′1 ∈ s2 iff p2
a
−→2 p

′
2 and p

′
2 ∈ s2, where −→i denotes −→e if si ∈ Se or

−→f if si ∈ Sf .

It follows that the classifier g = (S,A, s,−→) constructed above is a well
defined classifier DFA. Moreover, the observation classes that it induces are
coarser than any class of ∼e and ∼f . Due to the properties of the Union-
Find algorithm, ∼g is actually the least equivalence encompassing both ∼e
and ∼f :

Proposition 5.46. Let ∼e and ∼f be equivalences over Action
∗, induced by

classifiers e = (Se,Action, se,−→e) and f = (Sf ,Action, sf ,−→f). The equiv-
alence ∼e t ∼f is induced by a classifier g such that its states are computed
applying the Union-Find algorithm to the set

{ {ei, fj} | (ei, fj) reachable in e⊗ f } ,

where two sets s1,s2 are unifiable if s1∩s2 is not empty. The union operation
is a set union, the initial state is the set containing initial states of e and
f , and the transition function is a sum of transition functions lifted to sets
of states.

The rightmost IOATS on Fig. 5.11 is a product of E and F obtained
by application of the composition rules from section 5.3 (PG,SO) and the
above algorithm for least upper bound of two equivalence relations on sets of
sequences. The product gives rise to the observer which does not distinguish
any sequences.

128 Color-blind Semantics for Environments

5.6 Example: Output Structure

In chapter 2 (see in particular 2.2.3) we have defined semantics for stat-
echarts with various output structures. In section 5.5 we have seen how
color-blind environments can be constructed for systems expressed in such
languages. Now, we would like to provide an alternative formulation of
earlier semantics with various output structures, without explicit parame-
terization. Instead of parameterizing the semantics with the constructors
for outputs, as it was done in section 2.2.3, we accept one semantics, which
only produces sequences of outputs, and then embed the system in various
environments, to achieve various levels of sensitivity.

A system producing sequences can be turned into a set generating one
by embedding it into an environment SET consisting of the following states
and transitions:

∀e ∈ Event. Set
i!
−→set (5.25)

∀p ∈ P(Action). set
{σ | elems(σ)=p}?
−−−−−−−−−−−→Set (5.26)

Now whatever analysis/transformation is to be done on S in some environ-
ment E , it can be done on the environment E ×SET , which is equivalent to
running the same analysis in the set-based setting.

Similarly if a bag b is a function Action → N, then the environment
M-SET consisting of the following states and transitions:

∀e ∈ Event. M-set
i!
−→m-set

∀b ∈M(Action). m-set
{σ | ∀a∈Action.b(a)=|σ�{a}| }?
−−−−−−−−−−−−−−−−−−−−→M-set

can be used to turn a sequence based semantics into a multi-set based one.

Needless to say the perfect vision environment V preserves the sequence
based semantics in such a context (and obviously being a 1 in the boolean
algebra of environments it can be dropped altogether).

Construction of the environment Inter ignoring admissible interleavings
in the output sequences (see row 4 in table 2.1) is slightly more complex.
It requires knowledge about the structure of the model to be embedded
in the environment or in structure of the outputs themselves. The latter
approach has the advantage of keeping the environment model independent.
Trees can be used as a precise semantics of the interleaving—use operator
‖ (section 2.2.3). Once the outputs are seen as trees, each observation class
has to identify all possible sequentializations (topological sortings) of some
tree. We spare the technical details here.

5.7 Discussion of Discrimination 129

5.7 Discussion of Discrimination

Definition 5.20 introduced a discrimination ordering on color-blind environ-
ments, using relativized simulation as the means for distinguishing systems.
It is a valid question to ask whether a different criterion would not be more
suitable, namely a two-way relativized simulation or the relativized bisim-
ulation. In fact all these relations give raise to the same discrimination
preorder, which we shall argue for now.

Definition 5.47. Let F and E be two color-blind environments of the same
signature: E

w

F iff ∀S1,S2.S1 ≶F S2 ⇒ S1 ≶E S2.

Definition 5.48. Let F and E be two color-blind environments of the same
signature: E<

∼F iff ∀S1,S2.S1 ∼F S2 ⇒ S1 ∼E S2.

Theorem 5.49. For any two environments with the same signatures:

E v F ⇐⇒ E

w

F ⇐⇒ E<
∼F

Proof. [case: E v F ⇒ E

w

F]. Assume that E v F . Take any two systems S1 and
S2 such that S1 ≶F S2. We need to show that S1 ≶E S2. But S1 ≶F S2 implies
S1 6F S2, which together with E v F implies S1 6E S2. A symmetric argument
leads to S2 6E S1, which conjoined lead to a conclusion that S1 ≶E S2. So E

w

F .

[Case: E

w

F ⇒ E<
∼F]. We shall prove the contrapositive instead: E 6

<
∼F ⇒ E 6

w

F .
Assume E 6 <∼F , so there exist systems S1, S2 such that S1 ∼F S2 and S1 6∼E S2.
We shall use S1 and S2 to construct new systems S3 and S4, such that S3 ≶F S4

and S3 6≶F S4.
Since S1 6∼E S2 there must exist a triple of states (S1, e, S2) ∈ Gen1 × ObsE ×

Gen2 and an observation class Oe such that both (S1, e) and (S2, e) are reachable

and e
Oe?
−−→ and:

1◦ either there exists an output o1 ∈ Oe such that S1
o1!−−→ and for all o′2 such

that S2

o′

2!
−−→ , we have that o′2 /∈ Oe,

2◦ or there exists an output o1 ∈ Oe such that S2
o1!
−−→ and for all o′2 such that

S1

o′

2!−−→ , we have o′2 /∈ Oe.

Assume case 1◦. At the same time environment F , being both input and output
enabled can execute S1 to a pair of states (S1, f). Since S1 ∼F S2, S2 can match all
actions of S1 on this execution path, reaching one of its states S

′
2. In particular take

Of such that o1 ∈ Of and f
Of ?
−−→ . Then there exists o2 ∈ Of such that S

′
2

o2!
−−→ .

So o1 ∈ Oe ∩ Of , while o
′
2 ∈ Of \Oe.

Assume case 2◦. Similarly environment F can execute S2 to a pair of states (S2, f)
and since S1 ∼F S2, S1 can match all actions of S2 on this execution path, reaching

130 Color-blind Semantics for Environments

one of its states S′
1. In particular take Of such that o1 ∈ Of and f

Of ?
−−→ . Then

there exists o2 ∈ Of such that S
′
1

o2!−−→ . So o1 ∈ Oe ∩Of and o2 ∈ Of \Oe.

In both cases we have indicated two outputs, o1 and o2, such that o1 ∈ Oe ∩Of

and o2 ∈ Of \ Oe. Let S3 be an IOATS consisting of the execution of S1 until

S1, and a single generation transition S1
o1!−−→x. Observation transitions from all

observers on the way, for all inputs not on this execution path, should also be
directed to x. The observer x is a fixed arbitrary observer such that the main
path is unreachable from it. The system S4 is identical to S3 only the transition
generating o1 is substituted by a transition generating o2, though still targeting x.
It is easy to see that S3 ≶F S4, since F is deterministic and the single path on
which S3 and S4 differ always takes it to the same state, which cannot distinguish
the difference. At the same time S3 6≶E S4. E will always see the difference.

[case: E<
∼F ⇒ E v F]. The proof of this implication is very similar to the previous

one. We shall prove the contrapositive: E 6v F ⇒ E 6 <∼F . Assume E 6v F , so there
exist systems S1, S2 such that S1 6F S2 and S1 66E S2. We shall use S1 and S2 to
construct new systems S3 and S4, such that S3 ∼F S4 and S3 6∼E S4.
Since S1 66E S2 there must exist a triple of states (S1, e, S2) ∈ Gen1 ×ObsE ×

Gen2 and an observation class Oe such that both (S1, e) and (S2, e) are reachable

and e
Oe?
−−→ there exists an output o1 ∈ Oe such that S1

o1!−−→ and for all o′2 such

that S2

o′

2!−−→ , we have that o′2 /∈ Oe.

At the same time environment F , being both input and output enabled can
execute S1 to a pair of states (S1, f). Since S1 ∼F S2, S2 can match all actions
of S1 on this execution path, reaching one of its states S ′

2. In particular take Of

such that o1 ∈ Of and f
Of ?
−−→ . Then there exists o2 ∈ Of such that S

′
2

o2!−−→ . So

o1 ∈ Oe ∩Of , while o2 ∈ Of \Oe.
Let S3 be an IOATS consiting of the execution of S1 until S1, and a single

generation transition S1
o1!−−→x. Observation transitions from all observers on the

way, for all inputs not on this execution path, should also be directed to x. The
observer x is a fixed arbitrary observer such that the main path is unreachable
from it. The system S4 is identical to S3 only the transition generating o1 is
substituted by a transition generating o2, though still targeting x. It is easy to see
that S3 ∼F S4, since F is deterministic and the single path on which S3 and S4

differ always takes it to the same state, which cannot distinguish the difference. At
the same time S3 6∼E S4. E will always see the difference.

5.8 Beyond the Basics

Our setup only has focused on standalone/centralized control systems mod-
eled in languages like statecharts. This was motivated by our initial require-
ments. It is a relevant question though how color-blindness could function
in a distributed asynchronous setup. The first issue one encounters when

5.8 Beyond the Basics 131

answering this question is that modeling distributed systems requires sup-
port for local hidden communication between components. It is traditional
to model this kind of communications using hidden actions (τ -actions), but
introduction of hidden actions to our framework invalidates the assumption
about the environments being deterministic, and in consequence invalidates
the proof of theorem 5.24.

Indeed it is now known that theorem 5.24 itself does not hold for non-
deterministic environments, or more precisely it may be that E v F , but
not E 6 F . Consider the counter example on Fig. 5.12, where In = {i}
and Out = {o1, o2, o3}. Environments E and F are distinguishing systems
only by looking at their first output, and they become blind soon after-
ward. There are only nine pairs of systems differing in the first step, and
it is easy to convince yourself that in all the nine cases the distinguishing
abilities of E are identical with those of F (both can take apart each out-
put from the others). So E v F and F v E but at the same time neither
E 6 F nor F 6 E . The reason is that the simulation relation for color-blind
environments (definition 5.21) is too strong for nondeterministic systems.
It requires that both environments are much more similar than needed for
preserving discrimination properties.

A conjecture has been made about the form of the simulation suitable
for nondeterministic color-blind IOATSs, but I have failed to prove theo-
rem 5.24 for these formulations. It is known though, that the proof for
general (nondeterministic) case may be very difficult. Kim Larsen describes
this difficulty in his dissertation [69], where the proof takes 12 pages and
is far from intuitive. We believe that that it is better to achieve more for
deterministic environments in practical setting, than to struggle in achieving
a more general theory, without the practical application, especially taking
into account the fact that environments in practical applications, are in-
deed deterministic. Nevertheless nondeterministic environments remain a
fascinating problem worth tackling in the future.

It seems that the setup for distributed systems should assume that all
systems are modeled as IOATSs, and only the outermost environment of
the entire network should be modeled as a color-blind IOATS. The crucial
challenge lies in proposing an algorithm, which for a given system would
infer an environment, based on the abilities of other connected systems and
the most outer environment. This could possibly be done compositionally

E : F :B

i!

i!

{o1, o2}?

{o3}?

{o2, o3}?

{o1}?
B

i!

i!

{o1, o2}?

{o3}?

{o1, o3}?

{o2}?

Figure 5.12: Counter example demonstrating mismatch of discrimination
and simulation for non-deterministic color-blind IOATS.

132 Color-blind Semantics for Environments

by “peeling” layers out of the network: first compose the outer environment
with all the systems that have a direct contact with it, creating a new most
general color-blind environment for the next layer of the systems. Then the
process should be iterated starting each time with the new outer environment
and the inner part of the system. This highly appealing idea having its roots
in [69] definitely deserves our consideration in the future.

Another theoretical challenge lies in generalizing theorem 5.49 into gen-
eral blocking, asynchronous CCS with relativized simulation as in Larsen’s
dissertation.

A more practical direction would be to attempt incorporation of color-
blindness into UML models (both behavioral and static). A good starting
point seems to be phrasing environments as protocol state machines [103,
pp.464-465] of UML, encoding color-blindness or extending UML with it.

5.9 Related Work

In [131] a static framework for specifying environments for reactive models
is presented, which relies solely on state independent properties. This chap-
ter has provided a theoretical foundation for a product line management
setup similar to the one of [131], but based on behavioral properties. The
static version did not support color-blind observations. Since the behav-
ioral framework subsumes the static one, we have decided not to include it
in this dissertation. However it seems perfectly possible to reformulate the
theory of [131] in the fashion used here, explicitly indicating (stateless) en-
vironments, their discrimination properties and respective orderings. Then
it shall easily follow that the behavioral framework is as expressive as the
static one. Moreover model transformations that can be proved correct with
respect to static assumptions, should also be correct with respect to their
behavioral counterparts.

The material on color-blindness presented above has been recently ac-
cepted for publication [72]. The main difference introduced since [72] was
written is the reformulation of the theory around relativized bisimulation.
Previously the theory was based on simulation (and two way simulation)
which under certain circumstances did not guarantee preservation of dead-
lock freeness (see section 5.4). The entire discussion of deadlock freeness is
new in the present edition.

The theory of algebraic specification of concurrent processes (CCS) is
due to Milner [94]. Relativized simulation has been originally introduced
by Larsen in 1996, in his dissertation [70, 69, 73] written under Milner’s
supervision. Our framework is modeled after this work, rephrased in the
setting of I/O alternating transition systems and extended with the notion
of color-blindness. In Larsen’s formulation, based on simple labeled tran-
sition systems [94], it was impossible to express environment’s inability to

5.10 Summary 133

distinguish outputs.
The study of behaviors of systems embedded into execution contexts is

relatively mature [69, 27, 84, 109, 58]. Our work stems out from this series,
by its extended support for observability specifications via color-blindness.
This support is needed, if the tools based on this framework, are to be
useful for development of product lines of embedded systems. Prototypes of
such tools, much in the spirit of Model Driven Architecture [99], are being
developed. A paper [109] by Rajamani and Rehof is a good starting point for
readers interested in deadlock-freeness preserving refinement—an approach
alternative to the one we had in this chapter (using a deadlock-preserving
equivalence in refinement-like applications).

5.10 Summary

We have presented a formalism for modeling environments of reactive syn-
chronous systems. The essence of the formalism lies in the family of re-
finement and equivalence relations, which can be relativized and extended
with color-blindness. The notion of color-blindness, which is new to our best
knowledge, allows modeling dynamically changing abilities of the environ-
ment to observe mutations in output traces of systems. This in turn will be
used later on in model transformations in our code-generator.
We have introduced the discrimination preorder, which was instrumen-

tal in defining composition operators. In chapter 6 we will see how this
preorder supports incremental modeling of software product lines. We have
proposed a simple operational characterization of this preorder by means of
simulation. We have also discussed natural alternatives to our definition of
discrimination and argued that they all coincide.
Last but not least we have demonstrated how the framework can be

applied to realistic engineering design languages and argued that despite
refinement oriented applications color-blindness allows use of equivalence to
achieve similar purpose.

6

Product Line Derivation for
Control Systems

In the previous chapter we have studied the theory of color-blind environ-
ments and their abilities to discriminate systems. We have hinted that these
environments can be used as specifications for specialization of systems, and
consequently for modeling software product lines. In this short chapter we
shall pursue this idea further, by demonstrating a small example of a prod-
uct line. The implementation of such a setup is a major task in itself, which
we shall tackle separately in future projects. Nevertheless we will try to
include as many hints as possible on the implementation details.

We broaden the meaning of a system to encompass an entire family of
systems. Such a model (a statechart in our case) may represent function-
ality which in its entire richness may not be present in any of the actual
systems being produced in the company. It may even contain contradict-
ing behaviors, disambiguated by conditions on meta-states and meta-events
(where meta-entities are usual states and events, meant to be eliminated
during specialization). Particular systems are specified using models of en-
vironments. Each environment model depicts possible usage-observation
scenarios for a given member.

We begin with a brief discussion of requirements for model transforma-
tions suitable in product line derivation (section 6.1). Then we present the
example of alarm clock statechart (section 6.2) and models of environments
specifying simplified alarm clocks (section 6.3). Section 6.4 discusses the
challenges of implementation and other possible extensions. Section 6.5 is
devoted to related work. We summarize the chapter in section 6.6.

The content of this chapter is one of the main outcomes of this thesis
and the main motivation that led to development of the theory presented in
chapter 5. I recommend reading at least sections 6.2–6.3 for the practical
value they add to the content of chapter 5.

6.1 Requirements for Model Transformations 135

6.1 Requirements for Model Transformations

A tool supporting development of product lines would include a collection
of model transformations, applied to the general family model. Each trans-
formation can only be applied if its application precondition is satisfied. We
face two proof obligations here. The first is a manual proof of correctness of
the transformation itself, which can be done ahead of time. The second is
the application precondition satisfaction check, which takes place at special-
ization time. This second proof should be obtained automatically using one
of the available technologies (type checking, type inference, static analysis,
model checking, or theorem proving).
Let T be a model transformation,M a family model and E an environ-

ment defining a specific family member. We say that T is correct iff the
original model and the derived member are in E-relativized bisimulation re-
lation: T (M, E) ∼E M. This means that the behavior of the two systems
is virtually indistinguishable for E .
A system is called strongly deterministic if its observation relation is

deterministic, and there is only one outgoing edge from each generator (so
that the response to the incoming input is entirely deterministic). Many
engineering design languages and virtually all main programing languages
are strongly deterministic. This fact can be used to reduce the correctness
proof for transformations to one-way simulation proof.

Proposition 6.1. Let M and I be strongly deterministic systems. Then
for any compatible environment E:

I 6E M⇒ I ∼E M .

6.2 The Alarm Clock Example

Figure 6.1 depicts a statechart of an alarm clock C0 consisting of three state
machines. The essential features of the alarm clock are handled by the timer
machine. If the timer is in the armed state and the hardware sends an alarm
time-out event, alarmTO, then the beeper is turned on. If the user wants to
postpone the alarm he has to press the snooze button (event snooze), which
allows him to continue sleeping until the snooze timer times out (event
snoozeTO). The backlight machine controls whether the backlight in the
alarm clock should be off, glowing or on. Only a faint light is displayed in the
glowing state, such that the clock display can be read in the dark. The full
light is on (state on) while the alarm is beeping or the snooze button is being
pressed. The snoozeR event denotes the releasing of the snooze button. The
sensor machine models a memory cell storing information about the level of
light in the surroundings of the alarm clock. Proper events (dark, bright)
are generated by the sensor driver whenever the ambient light passes above
or below some threshold.

136 Product Line Derivation for Control Systems

day night
dark

bright

idle fired delayed
alarmTO/
beepOn

snoozeTO/
beepOnbeepOff

alarm/

snooze/
beepOff

armed

alarm

alarm

alarmTO ∧ armed ∨ snoozeTO ∧ delayed ∨ snooze/lightOn

onoff glowing
dark

/glow

((alarm ∧ fired) ∨ snoozeR) ∧ day/lightOff

(alarm ∧ fired ∨ snoozeR)
∧night / glow

bright/
lightOff

∨snoozeTO ∧ delayed/lightOn
snooze ∨ alarmTO ∧ armed

timer

backlight

sensor

C0

Figure 6.1: Model of a general alarm clock

We would like to support automatic derivation of variants for discrete
control systems such as the this clock. One such variant C1, which does
not activate the backlight in reaction to the snooze button, is depicted on
Fig. 6.2. Note the simplification of guards and two new transitions in the
backlight state machine. What is the relation between the two models? Both
models are indistinguishable for some execution environment, namely the
one which becomes blind for the lightOn action immediately after producing
the snooze event.
In a product line derivation scenario one usually assumes a domain model

(the general clock of Fig. 6.1 in our example). Product line members are usu-
ally defined using specifications indicating how they should be constructed
from the domain description. For control programs, we propose behavioral
specifications in the form of execution environments.

6.3 Product Line of Alarm Clocks

We shall now present a family of environment specifications and a corre-
sponding family of alarm clocks derived from the general alarm clock model,
using the environments. In our presentations we shall use two simplifying
shortcuts for expressing sets of observation classes (sets of labels of obser-
vation transitions). For a set of actions A ⊆ Action let ignore A denote
observation classes that ignore all elements of A, but distinguish all the
other actions:

ignore A =
{

{o ∪ o′|o′ ∈ P(A)}
∣

∣ o ∈ P(Action \A)
}

(6.1)

6.3 Product Line of Alarm Clocks 137

onoff glowing

((alarm ∧ fired) ∨ snoozeR) ∧ day/lightOff

idle armed fired delayed
alarmTO/
beepOn

snoozeTO/
beepOnbeepOff

alarm/

snooze/
beepOff

day night

alarmTO ∧ armed ∨ snoozeTO ∧ delayed/lightOn

timer

backlight

sensor

alarm

alarm

dark

bright

bright/ lightOff

dark / glow

∧night / glow
(alarm ∧ fired ∨ snoozeR)

snooze

alarmTO ∧ armed
∨snoozeTO ∧ delayed/lightOn

snooze

C1

Figure 6.2: A specialized model, C1 of the alarm clock

ignore{}?

bright!
dark!
alarm!

snoozeTO!
alarmTO!

ignore{}?

snooze! snoozeR!

dark!

snoozeTO!
bright!

ignore{}?

alarm!

alarmTO!

Figure 6.3: Interleave snooze snoozeR. Generation transitions to the blind
observer b are not shown.

Note that ignoring the empty set, ignore {}, means observing any difference
in outputs.
Another abbreviation equiv A denotes observation classes that are unable

to distinguish between any actions in A:

equiv A =
{

{o ∪ o′|o′ ∈ P(A) \ ∅}
∣

∣ o ∈ P(Action \ A)
}

∪
{

o
∣

∣ o ∈ P(Action \ A)
}

(6.2)

In order to structure our specifications, we shall first state general re-
quirements, which should hold for all the environments used to execute the
alarm clock. These general requirements usually reflect the physical na-
ture of actuators and sensors. In our case we state that dark/bright and
snooze/snoozeR are always generated in an alternating fashion.

E0 = Interleave snooze snoozeR ∧ Interleave dark bright (6.3)

138 Product Line Derivation for Control Systems

E ′:

ignore{lightOn}?ignore{}?

snoozeR!

snoozeTO!

alarmTO!

bright!

snooze!

dark!
alarm!

Figure 6.4: Environment E ′ ignoring the lightOn output produced in reaction
to the snooze button.

idle armed fired
alarmTO/
beepOn

beepOff

alarm/

day night
dark

bright

alarmTO ∧ armed ∨ snooze/lightOn

onoff glowing
dark

/glow

bright/
lightOff

(alarm ∧ fired ∨ snoozeR)
∧night / glow

((alarm ∧ fired) ∨ snoozeR) ∧ day/lightOff

timer

backlight

sensor

alarm

alarm

/lightOn
snooze ∨ alarmTO ∧ armed

C2

Figure 6.5: An alarm clock without the snooze function obtained by re-
moving outputs/guards that are never observed/satisfied in E2, and then
unifying states made indistinguishable (fired and snooze).

Figure 6.3 demonstrates how Interleave could be defined internally in a tool,
using a set-based semantics.

The first member of the family, C1, was introduced in the previous section
(Fig. 6.2). We have said that it operates in an environment which becomes
blind for the lightOn action right after generating the snooze event. Formally
E1 = E0 ∧ E

′, where E ′ is defined in Fig. 6.4.
Consider a new alarm clock variant C2, which is devoid of the actual

snooze function (Fig. 6.5). The user of this clock can still press the snooze
button, but the only effect it has is turning the backlight off for a short
while. We can say that this user (environment) becomes blind to beepOn
and beepOff actions initiated by the snooze and snoozeTO events. Formally
E2 = E0 ∧ E

′′, where E ′′ is defined on Fig. 6.6.
The third clock variant C3 is a combination of C1 and C2. It has neither

6.3 Product Line of Alarm Clocks 139

E ′′:

ignore{}? ignore{beepOn}?

snoozeR!

snoozeTO!

alarmTO!

bright!

snooze!

dark!
alarm!

snoozeTO!
ignore{beepOff}?

Figure 6.6: Environment E ′′ ignoring the snooze function of the clock. Gen-
eration transitions to the blind observer b are not shown.

onoff glowing

((alarm ∧ fired) ∨ snoozeR) ∧ day/lightOff

idle armed
alarmTO/
beepOn

beepOff

alarm/

day night

alarmTO ∧ armed/lightOn

timer

backlight

sensor

fired

alarm

alarm

dark

bright

bright/ lightOff

dark / glow

∧night / glow
(alarm ∧ fired ∨ snoozeR)

snooze

alarmTO ∧ armed
/lightOn

snooze

C3

Figure 6.7: C3 combines limitations of C1 and C2

140 Product Line Derivation for Control Systems

on

(alarm ∧ fired) ∨ snoozeR/lightOff

idle armed
alarmTO/
beepOn

beepOff

alarm/

day night

alarmTO ∧ armed/lightOn

fired

off/glowing

timer

backlight

sensor

alarm

alarm

dark

bright

snooze

C4

Figure 6.8: A model of the alarm clock with neither snooze related functions
nor the glowing mode. The glow and off states are unified after showing that
transitions connecting them have no side effects, transitions leaving them are
identical and there are no guards distinguishing their activity.

E ′′′:

equiv{glow, lightOff}?

bright!
dark!
alarm!

snoozeTO!
alarmTO!

snoozeR!

snooze!

Figure 6.9: Equiv glow lightOff

the snooze function nor the snooze activated backlight function. We obtain it
by specialization against the E3 environment, where E3 = E1∧E2. The model
is presented on Fig. 6.7. Note that this clock still needs a snooze button,
which exhibits a slight anomaly in turning on the glow mode, namely that
the glow mode will not be activated, while this button is pressed. This is a
perfectly correct reminiscence of our original model, which could be easily
remedied by adding another constraint to the environment, namely that
event snooze never occurs.

We would like to consider yet another restriction of the clock behavior.
The clock denoted C4 shall be deprived of the glowing mode (Fig. 6.8). The
glow-mode lamp is not installed and the glow action is reimplemented to
turn off the main lamp instead. A corresponding environment is E ′′′ defined

6.4 Beyond the Basics 141

C2

C0

C3

C4

E0

E3

E4

E2 C1E1

E1 E2

E4

E3

E3

Figure 6.10: Left: simulation relationships between the environments.
Right: relativized bisimulation relations between family members. Edges
are labeled with environments parameterizing the relation.

on Fig. 6.9. This environment is itself interesting as it specifies a less shiny
alarm clock, which may find its happy customers. Nevertheless, we decided
to combine its characteristic with restrictions of E3, giving rise to an even
simpler alarm clock with neither the snooze related functions nor the glow
mode: E4 = E3 ∧ E

′′′.
One can describe surprisingly many more reasonable variants even for

such a simple system as our alarm clock. Even the minimal statechart model,
which is a single state without any transitions, is a proper derivation from
our alarm clock (with respect to the blind environment B).

Figure 6.10 presents an overview of environments and systems in our
product line. Edges represent simulation and relativized bisimulation. The
following proposition explains how to interpret transitivity in the hierarchy
of systems (the right side of the figure):

Proposition 6.2. For any three systems S1, S2 and S3 and any two com-
patible color-blind environments E and F it holds that: S1 ∼E S2 ∧ S2 ∼F
S3 ∧ E 6 F ⇒ S1 ∼E S3.

6.4 Beyond the Basics

Even though the environments presented in the above example only consist
of conjunctions of very few properties, they still becomes very large if one
would like to expand them using rules 5.13–5.16. This has two consequences.
First, complicated specifications should be created compositionally, as in the
above example; preferably relying on a handful of predefined parameterized
environment templates, as we did above. A convenient set of basic templates
still needs to be found and this cannot be achieved without implementing
the entire system and running several case studies on realistic examples.
We foresee that in a product line tool the environments will not be drawn
as state machines, but instead composed of simple textual expressions. The
knowledge of predefined sets of available expressions can boost the automatic
analysis technology, too.

142 Product Line Derivation for Control Systems

Second, it seems infeasible to maintain environments in explicit state
machine form during analysis, as they are likely to explode in size. Instead
it is preferable to analyze the composition of the system and several environ-
ments at the same time. This is relatively easy to achieve if we only allow
conjunctions in environment expressions. We have designed provisional al-
gorithms achieving this and intend to publish them in near future.

Another important fragment of the road map to completely automatic
derivation of family members is the right set of model transformations. We
have devised a proposal of such a set and proved most of the transformations
correct. The remaining obstacle is to implement the transformations (easy)
and the proof machinery for verifying transformation preconditions (hard).
Currently we work on a prototype of the latter, which is based on simple
forward reachability analysis with BDDs. However, we do not expect over-
whelming results with this method. Models like C0 can indeed be analyzed
within seconds, but this method is hardly going to scale up to industrial
size models (hundreds of transitions). The forward reachability method
computes the complete reachable state space, before transformations can be
applied. The preconditions of transformations are usually predicates over
states, which can then be easily checked. The problem is that for larger
models, reachability is not likely to terminate in reasonable time in the first
place, thus not letting the specializer apply the transformations ever.

As an alternative we think of employing a mixture of program analysis
and partial reachability mechanisms. Experience [82, 81] shows that it is
often more efficient to make many separate small proofs instead of computing
the whole reachable state space and reason based on it. The compositional
and partial method of [81] works exactly with the same kind of systems we
are dealing with. We hope that we can devise a similar set of techniques for
dealing with proofs of transformation preconditions. The author is currently
working on this problem within a new project in the Embedded Software
Systems Center (CISS) at Aalborg University.

6.5 Related Work

Derivation of product lines can be implemented using partial evaluation
technology [63, 24, 48]. There have been some limited attempts to enable
partial evaluation based on execution traces instead of specific input values
(see [54, 97, 34]), nevertheless these were never implemented for realistic
engineering languages. We fear that these abstract process calculi transfor-
mations can be barely applied in such contexts. This is why we propose a
bottom up approach, where transformations are defined on the actual lan-
guage level, and proved correct on the abstract level. Our framework allows
more transformations than known before due to the color-blindness, which
allows some non-reductive mutations in the program.

6.6 Summary 143

As we have mentioned before, we originally proposed derivation of prod-
uct lines for programs with explicit control flow in [131]. The behavioral
theory that came in [72] and in chapter 5 has been mostly motivated by
requirements set by [131] for the static setting. In that paper we postulated
hierarchical (or lattice-like) shapes of product families. We demonstrated a
simple product line of CD players, shaped similarly to our family of alarm
clocks, from the present text. In [131] we have also proposed a specialization
algorithm, which we have not yet extended for the behavioral version. This
algorithm may be of interest for reasons of scalability. Although the older
static framework offers less expressive product specifications, it is easier to
implement efficiently.

6.6 Summary

This chapter was devoted to practical demonstration of application of theory
introduced in chapter 5. We have indicated that generation of product fam-
ily members can be carried out by means of model transformations which
transform the model of the entire family under an assumption of specific
execution environment. We have required that the result of such transfor-
mation is equivalent to the original model up to relativized bisimulation.
Then we have shown a statechart model of a simple alarm clock and a

lattice of various execution environments, each presenting a different usage
scenario of the alarm clock. We arrived at an isomorphic lattice of corre-
sponding alarm clocks, related by relativized bisimulation. Finally we have
sketched the main obstacles on the road to automatic derivation of such
model families, which is the topic of our ongoing work.

7

Conclusion

Let me briefly summarize the achievements of this thesis. The departing
point for our investigations was the formal definition of the statechart lan-
guage, which was parameterized with various priority orderings and output
structures. This allowed us to simultaneously cover multiple variants of stat-
echarts in some of the later investigations, such as the color-blind theory.
In particular it led us to the algorithm for static conflict resolution, which
is independent of any particular conflict resolution strategy.

We have studied several classes of approaches to code generation, finding
that the interpretative method (based on runtime model representation and
an interpreter) is the most suitable for our requirements: both because of
its high memory efficiency and due to good behavior with respect to fault
tolerance in systems without memory protection. We have discussed the
construction of a modular, retargetable code generator, SCOPE, based on
the interpretative method. In order to simplify the runtime interpreter, we
proposed two algorithms that replace interpreter logic with additional tran-
sitions in the runtime representation of the model: elimination of dynamic
scopes and static conflict resolution. Similar algorithms can be proposed
for other contrived elements of the statechart language not covered in this
thesis (in particular do reactions, forks and joins).

We have deeply analyzed two code generation methods implemented
in SCOPE: one preserving the hierarchy and one based on flattening. We
have found that, even though the hierarchical code generator scales well
and beats the industrial implementations, the flattening back-end performs
even better in majority of cases. This was possible due to a novel flattening
algorithm, which only increases the size of the model polynomially. The
existence of such an algorithm was seriously doubted previously. We have
shown that an algorithm, which does not exploit the internal asynchronous
message passing mechanism (signals), is doomed to perform miserably on
deep and highly concurrent models. Our flattening code generator beats
the visualSTATE implementation by approximately 30% on the middle sized

145

industrial examples and by up to 80% on the artificially created examples.
The code generated by SCOPE uses very little writable memory (as low as
15-30 bytes plus the size of the current state vector).
In the second part of the thesis we have explored theoretical topics re-

lated to specifications of correctness of code generation, and indirectly to
modeling of software product lines for embedded systems. We have ab-
stracted from the statechart language itself, by considering transition sys-
tems suitable for modeling all similar languages (maintaining input enabled-
ness and synchronicity). We enriched the language of environments with the
notion of color-blindness: a dynamic inability to observe variations in sys-
tem outputs. We have formalized discrimination properties of environments
and then proved an appealing characterization of the discrimination ordering
by means of simulation. This ordering became a base for shaping product
families in lattice like structures.
As we did for system models, we have also studied various output struc-

tures for environments. This is particularly important for environments,
since they shall be used as specifications for optimizers. Simpler output
structures (such as sets) are more automatically tractable than more ex-
pressive ones (sequences).
After having performed the steps necessary to instantiate the abstract

framework for concrete languages like statecharts, we considered a simple
statechart example and modeled a family of its variants by means of color-
blind environments. We obtained a flexible, behavioral language for model-
ing families of discrete control programs, which supports stepwise hierarchi-
cal development.
In all this work on code generation I have examined and created numer-

ous models of embedded systems, among others studying the works of alarm
clocks, CD players, microwave ovens, light switches, thermostat controllers,
vending machines, photo cameras and telephones. These models originated
from the industrial partners (some of them anonymized or obfuscated), stu-
dent projects, case studies, research papers and from my personal artificial
creativity. To make sure that my investigations were realistic, I have in-
spected instruction sets and architectures of popular microcontrollers, pri-
marily Atmel AVR/ATmega and Hitachi’s H8/300, the compilers and li-
braries from the embedded world (kindly supplied by IAR Systems), and
the source code of some real embedded applications developed in C and
assembly languages.
I have translated several statecharts to programs manually and devised a

high level environment for simulating and testing statecharts (an interpreter
coded in Standard ML and a collection of test scripts). I have myself imple-
mented several code generators (various back-ends of SCOPE and Charter)
and supervised student projects related to code generation and UML.
Today I am strongly convinced that model driven development not only

leverages the understanding of control algorithms used in the embedded

146 Conclusion

world, but also can integrate and boost various aspects of software engi-
neering: ranging from traditional problems of design and implementation
(translation in our case), via formal proofs of correctness (model checking),
automatic testing, monitoring and product line derivation (specialization).
I believe that it is possible to apply it even for embedded systems with
very constrained resources. In particular I have shown this by proposing
an efficient translation scheme for statecharts which beats current industrial
implementations and by developing a framework that integrates discrete
control models with product family modeling.
In the near future I expect to focus primarily on applications of color-

blind environment models to automatic derivation of product lines, auto-
matic testing and system monitoring (runtime verification).

Appendix A

Quantum Programming
Example

The following listing shows a simplified version of Samek’s [114] execution
engine—an abstract class QHsm implementing a state machine. Concrete
statecharts are implemented as a descendants of QHsm in this framework.
States of the statechart as modeled as functions (or more precisely pointers
to functions) handling events.
I have removed some optimizations and simplified the engine, so that it

is more apparent what is going on. The original engine is bigger, handles
more cases, may work faster occasionally. It also uses more space. Bear
in mind that Samek is not observing UML semantics. Most importantly
he does not handle concurrency, and whenever a transition is fired, he first
executes its action, then he exits the scope (firing respective exit actions)
and enters the target.

/∗ qhsm.cc: Samek’s quantum engine for executing a rectricted
version of statecharts.

Miro Samek. Practical Statecharts in C/C++. CMP Books. 2002

Simplifications by Andrzej Wasowski, IT University of Copenhagen.

∗/

#include <assert.h>

#define TRIGGER(state , sig) ((QState)(this->∗(state))(sig))

typedef int QEvent;

enum { Q empty=0, Q entry, Q exit, Q init, Q user };

class QHsm {

public:

typedef void (QHsm::∗QPseudoState)(QEvent const);
typedef QPseudoState (QHsm::∗QState)(QEvent const);

148 Quantum Programming Example

QHsm(QPseudoState initial) : myState(&QHsm::topstate),

mySource((QHsm::QState)initial) {};

virtual ~QHsm() {};

void init(QEvent const e = 0) {
QState s = myState;

(this->∗(QPseudoState)mySource)(e);
s = myState;

TRIGGER(s, Q entry);

while (TRIGGER(s, Q init)==0) {
s = myState;

TRIGGER(s, Q entry);

}
}

void dispatch(const QEvent e) {
mySource = myState;

while (mySource)

mySource = (QHsm::QState)(this->∗mySource)(e);
}

protected:

QPseudoState topstate (const QEvent) { return 0; } // the root
state

void tran(QState target);

void init (QState target) { myState = target; }

private:

QState mySource; // the source of currently taken transition

// needed for dynamic scope computation

QState myState;

};

// fires a transition targeting ’target’

void QHsm::tran(QState target) {
QState entry[8]; // 8 is assumed maximum depth of the hierarchy

QState p, q, s, ∗e, ∗lca;

for (s=myState; s!=mySource;) {
QState t = TRIGGER(s, Q exit);

if (t) s = t;

else s = TRIGGER(s,Q empty);

}

149

e = entry;

e[0] = 0;

∗(++e) = target; // assume entry to target

// (a) check mySource == target (transition to self)

if (mySource == target) {
TRIGGER (mySource, Q exit); // exit source

goto inLCA;

}

// (b) check mySource == target->super

p = TRIGGER(target, Q empty);

if (mySource == p) goto inLCA;

// (c) check mySource-->super == target->super (most common)

q = TRIGGER(mySource, Q empty);

if (q == p) {
TRIGGER(mySource, Q exit);

goto inLCA;

}

// (d) check mySource-super == target

if (q == target) {
TRIGGER(mySource, Q exit);

--e;

goto inLCA;

}

// (e) check rest of mySource == target->super->super hierarchy

∗(++e) = p;
for (s = TRIGGER(p, Q empty); s; s = TRIGGER(s, Q empty)) {
if (mySource == s) goto inLCA;

∗(++e) = s;
}
TRIGGER(mySource, Q exit);

// (f) check rest of mySource->super == target->super->super->...

for (lca = e; ∗lca; --lca) {
if (q == ∗lca) {
e = lca - 1;

goto inLCA;

}
}

// (g) check each mySource->super->super ... for each target ...

for (s = q; s; s = TRIGGER(s, Q empty)) {
for (lca = e; ∗lca; --lca) {
if (s==∗lca) {
e = lca - 1;

150 Quantum Programming Example

goto inLCA;

}
}
TRIGGER (s, Q exit);

}
assert(0); // should never reach here---malformed statechart

inLCA:

while (s = ∗e--) TRIGGER(s, Q entry);
myState = target;

while (TRIGGER(target, Q init) == 0) {
target = myState;

TRIGGER(target, Q entry);

}
}

typedef QHsm::QPseudoState QState;

A statechart of Fig. 3.1 is implemented below as a descendant of the
QHsm class. It is supposed to implement the same functionality as the code
of Fig. 3.2, modulo semantic variations by Samek (different order of actions
when transitions are fired). The code excerpt finishes with a dummy driver
for this statechart in QP framework. Again the driver replaces the code of
Fig. 3.3, for QP based implementations.

/∗ 2005 (c) Andrzej Wasowski, IT University of Copenhagen
qp.cc: Implementation of the statechart of figure

images/state-pattern.fig using Samek’s QP framework. ∗/

#include "qhsm.cc"

#include "actions.cc"

enum { e3 = Q user };

class Topstate : public QHsm {
public:

Topstate() : QHsm((QHsm::QPseudoState)(&Topstate::initial)) {};
private:

void initial(QEvent const);

QState M(QEvent e);

QState K(QEvent e);

QState L(QEvent e);

QState P(QEvent e);

};

QHsm::QState Topstate::M(QEvent e) {
switch (e) {
case Q init:

init ((QState)&Topstate::K);

151

return 0;

case Q entry:

o7();

return 0;

case Q exit:

o8();

return 0;

case e3:

o14();

tran((QState) &Topstate::P);

return 0;

};
return (QHsm::QState)&Topstate::topstate; //inherited

};

QHsm::QState Topstate::K(QEvent e) {
switch (e) {
case Q entry:

o9();

return 0;

case Q exit:

o10();

return 0;

case e3:

o13();

tran((QState) &Topstate::L);

return 0;

};
return (QHsm::QState)&Topstate::M;

};

QHsm::QState Topstate::L(QEvent e) {
switch (e) {
case Q entry:

o11();

return 0;

case Q exit:

o12();

return 0;

}
return (QHsm::QState)&Topstate::M;

};

QHsm::QState Topstate::P(QEvent e) {
switch (e) {
case Q entry:

o5();

return 0;

case Q exit:

152 Quantum Programming Example

o6();

return 0;

}
return (QHsm::QState)&Topstate::topstate;

};

void Topstate::initial(QEvent const e) {
init ((QState)(&Topstate::M));

}

// a dummy driver:

int main (void) {
Topstate t = Topstate();

t.init();

while (1) t.dispatch (e3);

}

The above program compiled with g++ for x86, including the QHsm en-
gine and dummy drivers produces an executable of 6400 bytes.

wasowski@klimt$ g++ -v

Reading specs from /usr/lib/gcc-lib/i686-pc-linux-gnu/3.3.5-20050130/specs

Configured with:

/var/tmp/portage/gcc-3.3.5.20050130-r1/work/gcc-3.3.5/configure

--enable-version-specific-runtime-libs --prefix=/usr

--bindir=/usr/i686-pc-linux-gnu/gcc-bin/3.3.5-20050130

--includedir=/usr/lib/gcc-lib/i686-pc-linux-gnu/3.3.5-20050130/include

--datadir=/usr/share/gcc-data/i686-pc-linux-gnu/3.3.5-20050130

--mandir=/usr/share/gcc-data/i686-pc-linux-gnu/3.3.5-20050130/man

--infodir=/usr/share/gcc-data/i686-pc-linux-gnu/3.3.5-20050130/info

--with-gxx-include-dir=/usr/lib/gcc-lib/i686-pc-linux-gnu/\

3.3.5-20050130/include/g++-v3

--host=i686-pc-linux-gnu --disable-altivec --enable-nls

--without-included-gettext --with-system-zlib --disable-checking

--disable-werror --disable-libunwind-exceptions --disable-multilib

--disable-libgcj --enable-languages=c,c++ --enable-shared

--enable-threads=posix --enable-__cxa_atexit --enable-clocale=gnu

Thread model: posix gcc version 3.3.5-20050130 (Gentoo Linux

3.3.5.20050130-r1, ssp-3.3.5.20050130-1, pie-8.7.7.1)

wasowski@klimt$ g++ -DNDEBUG -o qp -Os qp.cc -lstdc++ && strip qp

wasowski@klimt$ ls -l qp

-rwxr-xr-x 1 wasowski wasowski 6400 wrz 8 20:24 qp

Appendix B

SCOPE Hierarchical Engine

/∗ File : CodGenC1.c
∗ Comment: Runtime interpreter for programs generated with CodGenC1
∗
∗ Copyright (C) 2001-2004 Andrzej Wasowski
∗
∗ This program is free software; you can redistribute it and/or
∗ modify it under the terms of the GNU General Public License as
∗ published by the Free Software Foundation; either version 2 of
∗ the License, or (at your option) any later version.
∗
∗ This program is distributed in the hope that it will be useful,
∗ but WITHOUT ANY WARRANTY; without even the implied warranty of
∗ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
∗ General Public License for more details.
∗
∗ You should have received a copy of the GNU General Public License
∗ along with this program; if not, write to the Free Software
∗ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
∗ 02111-1307, USA.
∗/

/∗∗
∗ a hack to compile an avr version easily (unfortunately no assert
∗ in avr lib, at least in the one I got installed)
∗/

#ifdef NDEBUG

#define assert(p)

#else

#include <assert.h>

#endif

#define SCOPE VERBOSE 0

154 SCOPE Hierarchical Engine

#if (SCOPE VERBOSE && !defined(NDEBUG))

#define VERBOSE(msg) { printf ("%s", msg); }
#define VERBOSE OR(msg,s) { printf("%s", msg); \

print or sym(s); \
printf("\n"); }

#define VERBOSE AND(msg,s) { printf("%s", msg); \
print and sym(s); \
printf("\n"); }

#else

#define VERBOSE(msg)

#define VERBOSE OR(msg,s)

#define VERBOSE AND(msg,s)

#endif

#ifdef SCOPE CONFSET

/∗ next conf size ∗/
static confiter neco size = 0;

/∗ prev conf size ∗/
static confiter prco size = 0;

#endif

/∗ targets size ∗/
static tgtsiter tgts size = 0;

#ifndef NDEBUG

#include <stdlib.h>

#include <stdio.h>

/∗ check if targets are empty (used in assertions) ∗/
static int targets empty(void)

{
return tgts size == 0;

}

/∗ check if conf is empty (used in assertions) ∗/
static int conf empty(conf c)

{

#ifdef SCOPE CONFSET

if (c == next conf)

return (neco size == 0);

else

return (prco size == 0);

#else

int i = 0;

155

for (; i < STATE WIDTH; i++)

if (c[i] != STMRK)

return 0;

return 1;

#endif

}

/∗ check if state s is a member of c ∗/
int conf member ext(conf c, andstref s)

{

#ifdef SCOPE CONFSET

confiter i = 0;

confiter size = (c == next conf) ? neco size : prco size;

for (; i < size; ++i)

if (c[i] == s)

return 1;

return 0;

#else

return c[∗(GET AND(s))] == s;
#endif

}

void next conf reset(void)

{

#ifdef SCOPE CONFSET

neco size = 0;

#else

confiter i;

for (i = 0; i < STATE WIDTH; ++i)

next conf[i] = STMRK;

#endif

}

int compar(const void ∗a, const void ∗b)
{
if (∗(andstref ∗) a < ∗(andstref ∗) b)
return -1;

else if (∗(andstref ∗) a == ∗(andstref ∗) b)
return 0;

return 1;

156 SCOPE Hierarchical Engine

}

void print and sym(andstref s)

{
int c = 0;

while (1) {
if (and syms[c].id == s) {
printf("%s ", and syms[c].name);

break;

} else ++c;
}

}

void print or sym(orstref s)

{
int c = 0;

while (1) {
if (or syms[c].id == s) {
printf("%s", or syms[c].name);

break;

} else ++c;
}

}

/∗ check if ‘what’ is an andstate. Only works in --debug mode,
∗ as it uses symbolic dictionaries
∗/
unsigned is andstate(andstref what)

{
int c = 0;

while (and syms[c].id != 0) {
if (and syms[c].id == what)

return 1;

c++;

}
return 0;

}

/∗
∗ check if ‘what’ is an orstate. Only works in --debug mode,
∗ as it uses symbolic dictionaries
∗/
unsigned is orstate(orstref what)

{
int c = 0;

while (or syms[c].id != 0) {

157

if (or syms[c].id == what)

return 1;

c++;

}
return 0;

}

void dump conf()

{
int i = 0;

conf myconf;

#ifndef SCOPE CONFSET

int neco size = STATE WIDTH;

#endif

for (i = 0; i < neco size; ++i)

myconf[i] = next conf[i];

printf("conf: [");

qsort(myconf, neco size, sizeof(andstref), compar);

for (i = 0; i < neco size; ++i)

if (myconf[i] != STMRK)

print and sym(myconf[i]);

printf("]\n");
}

VS BOOL activeand next(const andstref what)

{
#ifdef SCOPE CONFSET

andstref min = ∗(GET AND(what) + 1);
confiter i = 0;

assert(min > STMRK);

/∗ you should never ask for sthg which is not a state ∗/
assert(what != STMRK);

assert(what != HMRK);

assert(what != IMRK);

assert(is andstate(what));

/∗ you should never need to test activity of rootstate ∗/
assert(∗GET AND(what) != STMRK);
/∗ or in other words (should be a redundant test): ∗/
assert(what != ROOT STATE);

/∗ non-state will never cause activity ∗/
assert(STMRK < what);

for (; i < neco size; ++i)

if (next conf[i] >= min && next conf[i] <= what)

return 1;

158 SCOPE Hierarchical Engine

return 0;

#else

assert(what != ROOT STATE);

assert(∗GET AND(what) < STATE WIDTH);
return next conf[∗GET AND(what)] == what;
#endif

}

VS BOOL activeor next(const orstref what)

{
#ifdef SCOPE CONFSET

/∗ inefficient but ok for testing ∗/
const horcell ∗ i = GET OR(what);
do {
if (activeand next(∗i)) return 1;
i++;

} while (∗(i-1) < ∗i);

return 0;

#else

assert(what < STATE WIDTH);

return next conf[what] != STMRK;

#endif

}

#endif /∗ NDEBUG ∗/

VS BOOL activeand(const andstref what)

{
#ifdef SCOPE CONFSET

andstref min = ∗(GET AND(what) + 1);
confiter i = 0;

assert(min > STMRK);

/∗ you should never ask for sthg which is not a state ∗/
assert(what != STMRK);

assert(what != HMRK);

assert(what != IMRK);

assert(is andstate(what));

/∗ you should never need to test activity of rootstate ∗/
assert(∗GET AND(what) != STMRK);
/∗ or in other words (should be a redundant test): ∗/
assert(what != ROOT STATE);

/∗ non-state will never cause activity ∗/
assert(STMRK < what);

for (; i < prco size; ++i)

if (prev conf[i] >= min && prev conf[i] <= what)

159

return 1;

return 0;

#else

return prev conf[∗GET AND(what)] == what;
#endif

}

#ifdef SCOPE SIGNALQUEUE

/∗ Signal Queue - implemented as a round buffer ∗/
static queueiter qbeg = 0;

static queueiter qend = 0;

/∗
∗ silently assume that queue is long enough! which shall be the
∗ case, since verification returns this result
∗/
void enqueue1(eventtag e)

{
assert(e < EVENTNO);

queue[qend] = e;

if (qend == QUEUE LENGTH - 1)

qend = 0;

else

qend++;

assert(qend != qbeg);

}

#ifdef SCOPE SLIST

void enqueueList(signalref ref)

{
while (signals[ref] != NOEVENT)

enqueue1(signals[ref++]);

}
#endif

/∗ returning NOEVENT means that the queue is empty. Result is
∗ returned in CurrEvent.tag (global variable). That is the way you
∗ do it in this funny language to conserve space ...
∗/
void dequeue1(void) {
if (qend != qbeg) { /∗ non empty ∗/

CurrEvent.tag = queue[qbeg];

if (qbeg == QUEUE LENGTH - 1)

160 SCOPE Hierarchical Engine

qbeg = 0;

else

qbeg++;

} else
CurrEvent.tag = NOEVENT;

}

#endif /∗ SCOPE SIGNALQUEUE ∗/

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Implementation of The Interpreter ∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

/∗ entering states. Invariant is that if called on the whole
∗ hierarchy leaves vector of target empty. If called on the part
∗ removes the states belonging to this part. This is deep entering,
∗ so it sometimes has to search through the hierarchy to decide if
∗ the state should be entered.
∗/
static void enterand(andstref scope);

static void enteror(orstref scope) {
tgtsiter j = 0;

const horcell ∗i = GET OR(scope);
andstref min = ∗(GET AND(∗i) + 1);
const horcell ∗max = i;
andstref andst = 0;

assert(!activeor next(scope));

assert(∗i != STMRK);
VERBOSE OR("Entering ", scope);

while (∗max < ∗(max + 1))
++max;

assert(∗max != STMRK);
assert(∗max != HMRK);
assert(is andstate(∗max));
assert(is andstate(min));

for (; j < tgts size; ++j)

if (targets[j] <= ∗max && targets[j] >= min) {
for (; ∗i < targets[j]; ++i);
assert(i <= max);

andst = ∗i;
assert(is andstate(andst));

break;

161

}

if (andst) {
if (targets[j] == andst)

targets[j] = targets[--tgts size];

} else {
/∗ enter by default: history or initial ∗/

#ifdef SCOPE HISTORY

if (∗(max + 1) == HMRK)
andst = history[∗(max + 2)];
else

#endif

andst = ∗GET OR(scope);
}
exec(GET ENTER(andst));

#ifndef SCOPE CONFSET

assert (andst != STMRK);

assert (andst != ROOT STATE);

assert (is andstate(andst));

assert (scope < STATE WIDTH);

next conf[scope] = andst;

#endif

enterand(andst);

assert(activeor next(scope));

}

static void enterand(andstref scope)

{
const handcell ∗i = GET AND(scope) + 1;

assert(is andstate(scope));

VERBOSE AND("Entering ", scope);

if (∗i != scope) {
++i;

do {
enteror(∗i);
++i;

}
while (∗(i - 1) < ∗i);

}
#ifdef SCOPE CONFSET

else {
/∗ add scope to next configuration ∗/
assert(neco size < STATE WIDTH);

next conf[neco size++] = scope;

}
#endif

162 SCOPE Hierarchical Engine

assert(scope == ROOT STATE || activeand next(scope));

}

#ifdef IMPURE EXIT

static void exitor impure(orstref);

static void exitand impure(andstref s)

{
const handcell ∗i = GET AND(s) + 1;

VERBOSE AND("Exiting-and ", s);

assert(is andstate(s));

assert(activeand next(s));

if (∗i != s) {
++i;

do {
exitor impure(∗i);
++i;

} while (∗(i - 1) < ∗i);
}
#ifdef SCOPE CONFSET

else {
/∗ remove s from configuration ∗/
confiter c = neco size - 1;

assert(conf member ext(next conf, s));

for (; next conf[c] != s; --c) {
assert(c > 0);

}
next conf[c] = next conf[--neco size];

}
assert(!activeand next(s));

#endif /∗ SCOPE CONFSET ∗/
}

#else /* not IMPURE EXIT ∗/

#define exitor impure(s) exitor pure(s)

#endif

#ifdef IMPURE EXIT

163

static void exitor impure(const orstref scope)

{
#ifdef SCOPE CONFSET

confiter j;

const horcell ∗i = GET OR(scope);
andstref min = ∗(GET AND(∗i) + 1);
const horcell ∗max = i;
confiter oldbufsize = neco size;

#endif

andstref andst;

VERBOSE OR("Exiting-or-impure ", scope);

assert(activeor next(scope));

#ifdef SCOPE CONFSET

while (∗max < ∗(max + 1))
++max;

assert(∗i != STMRK);
assert(∗max != STMRK);
assert(∗max != HMRK);
assert(is andstate(∗max));
assert(is andstate(min));

for (j = 0; j < neco size; ++j)

if (next conf[j] <= ∗max && next conf[j] >= min) {
for (; ∗i < next conf[j]; ++i);
assert(i <= max);

andst = ∗i;
break;

}

#if defined(SCOPE HISTORY)

if (∗(max + 1) == HMRK)
history[∗(max + 2)] = andst;

#endif

#else

assert (scope < STATE WIDTH);

andst = next conf[scope];

#if defined(SCOPE HISTORY)

{
const horcell ∗i = GET OR(scope);
do ++i;

while (∗(i-1) < ∗i);
if (∗i == HMRK)
history[∗(i + 1)] = andst;

}

164 SCOPE Hierarchical Engine

#endif

#endif

assert(andst != ROOT STATE);

assert(andst != STMRK);

assert(andst != HMRK);

assert(is andstate(andst));

assert(activeand next(andst));

exitand impure(andst);

#ifndef SCOPE CONFSET /∗ remove from next configuration ∗/
assert(scope < STATE WIDTH);

next conf[scope] = STMRK;

assert(!activeand next(andst));

#endif

exec(GET EXIT(andst));

#ifdef SCOPE CONFSET

assert(oldbufsize >= neco size);

#endif

assert(!activeor next(scope));

VERBOSE OR("Exited-or-impure ", scope);

} /∗ exitor impure() ∗/

#endif /∗ IMPURE EXIT ∗/

#ifndef PURE EXIT

#define exitor pure(s) exitor impure(s)

#else /∗ defined(PURE EXIT) ∗/

#ifndef SCOPE CONFSET

#error "Pure exit only works in confset mode"

#endif

void exitor pure(orstref s)

{
#ifndef NDEBUG

int removed = 0;

int presize = neco size;

#endif

confiter j = 0;

const andstref ∗const i = GET OR(s);
andstref min = ∗(GET AND(∗i) + 1);

165

const horcell ∗max = i;

VERBOSE OR("Exiting-or-pure ", s);

assert(is orstate(s));

assert(!conf empty(next conf));

assert(activeor next(s));

while (∗max < ∗(max + 1))
++max;

assert(is andstate(∗max));
assert(ROOT STATE > ∗max || ROOT STATE < min);

while (j < neco size)

if (next conf[j] >= min && next conf[j] <= ∗max) {
next conf[j] = next conf[--neco size];

#ifndef NDEBUG

removed++;

#endif

} else
j++;

assert(removed);

assert(neco size + removed == presize);

assert(!activeor next(s));

}

#endif /∗ PURE EXIT ∗/

/∗ Fire a transition. Transition is assumed to be enabled.
∗ The parameter passed is assumed to be the index in
∗ transitions array were the guard/action indicators are kept.
∗ We point into the middle of the record for slight efficiency
∗ gain. The preceding part will not be used in this function
∗ anyway. The assumption is that targets are empty on entry
∗ and on exit.
∗/

void fire(const transcell ∗ ptr)
{
actionref ac = STMRK;

const transcell ∗s;

#ifdef SCOPE GUARDS

guardref gd = STMRK;

UNMANGLE ACGD(ptr, ac, gd);

if (!eval(gd))

return;

166 SCOPE Hierarchical Engine

#else

UNMANGLE AC(ptr, ac);

#endif

assert(targets empty());

s = ptr;

while (∗s != STMRK) {

assert(∗s < MARKNO);

#ifndef IMPURE EXIT

assert(∗s != IMRK && ∗s != HMRK);
#endif

#ifndef PURE EXIT

assert(∗s != FPSCOP && ∗s != NFPSCOP);
#endif

switch (∗(s++)) {
#ifdef IMPURE EXIT

case HMRK: /∗ flat non pure exit ∗/

do

exitor impure(∗(GET AND(∗(s++))));
while (∗s >= MARKNO);
break;

case IMRK: /∗ nonflat and nonpure exit ∗/

exitor impure(∗(s++));
while (∗s >= MARKNO)
s++;

break;

#endif

#ifdef PURE EXIT

case FPSCOP: /∗ flat pure exit ∗/

do

exitor pure(∗(GET AND(∗(s++))));
while (∗s >= MARKNO);
break;

case NFPSCOP: /∗ nonflat and pure exit ∗/

exitor pure(∗(s++));
while (∗s >= MARKNO)
s++;

#endif

}

167

assert(∗s < MARKNO);
}

VERBOSE("TRANAC:")

exec(ac);

VERBOSE(" TRANAC\n")

while (∗ptr != STMRK) {

assert(∗ptr < MARKNO);

#ifndef IMPURE EXIT

assert(∗s != IMRK && ∗s != HMRK);
#endif

#ifndef PURE EXIT

assert(∗s != FPSCOP && ∗s != NFPSCOP);
#endif

if (

#ifdef IMPURE EXIT

∗ptr == HMRK ||
#endif

#ifdef PURE EXIT

∗ptr == FPSCOP
#else

0

#endif

) { /∗ flat ∗/

while (∗(++ptr) >= MARKNO) {
targets[0] = ∗ptr;
tgts size = 1;

enteror(∗(GET AND(∗ptr)));
}

} else { /∗ non flat ∗/

orstref scope = ∗(++ptr);

for (++ptr; ∗ptr >= MARKNO; ++ptr)
targets[tgts size++] = ∗ptr;
enteror(scope);

}

assert(targets empty());

assert(∗ptr < MARKNO);
}

168 SCOPE Hierarchical Engine

}

/∗ microstep - assumes that proper event is already in CurrEvent no
∗ conflict resolution currently. Everything will collapse
∗ on conflict
∗/
void microstep(void)

{

const transcell ∗t = trans + tranidx[CurrEvent.tag];

assert(CurrEvent.tag < NOEVENT);

if (tranidx[CurrEvent.tag] != TRANS MAX)

do {

unsigned int pc, nc;

UNMANGLE PCNC(t, pc, nc);

for (; pc > 0; --pc, ++t)

if (!activeand(∗t))
goto skiptr;

for (; nc > 0; --nc, ++t)

if (activeand(∗t))
goto skiptr;

fire(t); /∗ checking guard is deferred to fire ∗/

skiptr:while (∗t != STMRK)
++t;

++t;

}
while (t < trans + tranidx[CurrEvent.tag + 1]);

}

/∗ assumes that external event is already in CurrEvent the newest
∗ configuration is always kept in next conf. prev conf is only
∗ occasionally used for guard computations.
∗/
void macrostep(void)

{

#ifdef SCOPE SIGNALQUEUE

while (CurrEvent.tag != NOEVENT) {
#endif

confiter i = 0;

169

#ifdef SCOPE CONFSET

prco size = neco size;

for (; i < neco size; ++i)

prev conf[i] = next conf[i];

#else

for (; i < STATE WIDTH; ++i)

prev conf[i] = next conf[i];

#endif

assert(!conf empty(next conf));

microstep();

#ifdef SCOPE SIGNALQUEUE

dequeue1();

}
#endif

}

/∗ initialize the model. Note: st init will only work on empty
∗ configuration. If there is a need for multiple initializations
∗ at runtime another function (see testdrv) has to be called to
clean

∗ current conf
∗/
void st init(void)

{
#ifdef SCOPE CONFSET

prco size = neco size = 0;

#else

confiter i = 0;

for(i; i < STATE WIDTH; ++i)

prev conf[i] = next conf[i] = STMRK;

#endif

enterand(ROOT STATE);

#ifdef SCOPE SIGNALQUEUE

dequeue1();

macrostep();

#endif

}

Appendix C

SCOPE Flat Engine

/∗ File : CodGenCF.c
∗ Comment: Runtime interpreter for programs generated with CodGenCF
∗
∗ Copyright (C) 2003 Andrzej Wasowski
∗
∗ This program is free software; you can redistribute it and/or
∗ modify it under the terms of the GNU General Public License as
∗ published by the Free Software Foundation; either version 2 of
∗ the License, or (at your option) any later version.
∗
∗ This program is distributed in the hope that it will be useful,
∗ but WITHOUT ANY WARRANTY; without even the implied warranty of
∗ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
∗ General Public License for more details.
∗
∗ You should have received a copy of the GNU General Public License
∗ along with this program; if not, write to the Free Software
∗ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
∗ 02111-1307, USA.
∗/

/∗ a hack to compile an avr version easily (unfortunately no assert
∗ in avr lib, at least in the one I got installed)
∗/

#ifdef NDEBUG

#define assert(p)

#else

#include <assert.h>

#endif

#define SCOPE VERBOSE 0

#if (SCOPE VERBOSE && !defined(NDEBUG))

171

#define VERBOSE(msg) { printf ("%s", msg); }
#else

#define VERBOSE(msg)

#endif

#ifndef NDEBUG

#include <stdlib.h>

#include <stdio.h>

#if STATE WIDTH > 0

/∗ check if conf is empty (used in assertions) ∗/
static int conf empty(conf c)

{
int i = 0;

for (; i < STATE WIDTH; i++)

if (c[i] != STMRK)

return 0;

return 1;

}

/∗ check if state s is a member of c ∗/
int conf member ext(conf c, stref s)

{
return c[anatomy[s]] == s;

}

void next conf reset(void)

{
confiter i;

for (i = 0; i < STATE WIDTH; ++i)

next conf[i] = STMRK;

}

int compar(const void ∗a, const void ∗b)
{
if (∗(stref ∗) a < ∗(stref∗) b)
return -1;

else if (∗(stref ∗) a == ∗(stref ∗) b)
return 0;

return 1;

}

void print st sym(stref s)

{
int c = 0;

while (1) {
if (st syms[c].id == s) {
printf("%s ", st syms[c].name);

172 SCOPE Flat Engine

break;

} else ++c;
}

}

void print mchn sym(mchnref s)

{
int c = 0;

while (1) {
if (mchn syms[c].id == s) {
printf("%s", mchn syms[c].name);

break;

} else ++c;
}

}

/∗ check if ‘what’ is a state. Only works in --debug mode, as it
∗ uses symbolic dictionaries
∗/
unsigned is state(stref what)

{
int c = 0;

while (st syms[c].id != 0) {
if (st syms[c].id == what)

return 1;

c++;

}
return 0;

}

/∗ check if ‘what’ is an orstate. Only works in --debug mode, as it
∗ uses symbolic dictionaries
∗/
unsigned is mchn(mchnref what)

{
int c = 0;

while (mchn syms[c].id != 0) {
if (mchn syms[c].id == what)

return 1;

c++;

}
return 0;

}
#endif /∗ STATE WIDTH > 0 ∗/

void dump conf()

{
#if STATE WIDTH > 0

int i = 0;

173

conf myconf;

for (i = 0; i < STATE WIDTH; ++i)

myconf[i] = next conf[i];

printf("conf: [");

qsort(myconf, STATE WIDTH, sizeof(stref), compar);

for (i = 0; i < STATE WIDTH; ++i)

if (myconf[i] != STMRK)

print st sym(myconf[i]);

printf("]\n");
#else

printf("[No discrete states in this model]\n");
#endif

}

#if STATE WIDTH > 0

VS BOOL activest next(const stref what)

{
assert(is state (what));

assert(anatomy[what] < STATE WIDTH);

return next conf[anatomy[what]] == what;

}
#endif

#endif /∗ NDEBUG ∗/

#if STATE WIDTH > 0

VS BOOL active(const stref what)

{
return prev conf[anatomy[what]] == what;

}
#endif

#ifdef SCOPE SIGNALQUEUE

/∗ Signal Queue - implemented as a round buffer ∗/
static queueiter qbeg = 0;

static queueiter qend = 0;

/∗ silently assumes that queue is long enough! which shall be
∗ the case, since verification checks for that.
∗/
void enqueue1(eventtag e)

{

assert(e < EVENTNO);

queue[qend] = e;

174 SCOPE Flat Engine

if (qend == QUEUE LENGTH - 1)

qend = 0;

else

qend++;

assert(qend != qbeg);

}

#ifdef SCOPE SLIST

void enqueueList(signalref ref)

{
while (signals[ref] != NOEVENT)

enqueue1(signals[ref++]);

}
#endif

/∗ returning NOEVENT means that the queue is empty result is
∗ returned in CurrEvent.tag (global variable) That is the way
∗ you do it in this funny language to conserve space ...
∗/
void dequeue1(void) {

if (qend != qbeg) { /∗ non empty ∗/

CurrEvent.tag = queue[qbeg];

if (qbeg == QUEUE LENGTH - 1)

qbeg = 0;

else

qbeg++;

} else
CurrEvent.tag = NOEVENT;

}

#endif /∗ SCOPE SIGNALQUEUE ∗/

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Implementation of The Interpreter ∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

/∗ Fire a transition. Transition is assumed to be enabled. The
∗ parameter passed is assumed to be the index in transitions array
∗ were the guard/action indicators are kept. We point into the
∗ middle of the record for slight efficiency gain. The preceding
∗ part will not be used in this function anyway. The assumption is
∗ that targets are empty on entry and on exit.
∗/
void fire(const transcell ∗ ptr)
{

175

actionref ac = STMRK;

#ifdef SCOPE GUARDS

guardref gd = STMRK;

UNMANGLE ACGD(ptr, ac, gd);

if (!eval(gd))

return;

#else

UNMANGLE AC(ptr, ac);

#endif

VERBOSE("TRANAC:")

exec(ac);

VERBOSE(" TRANAC\n")
#if STATE WIDTH > 0

while (∗ptr != STMRK) {
assert(is state (∗ptr));
next conf[anatomy[∗ptr]]=∗(ptr++);

}
#else

assert(∗ptr == STMRK); /∗ no state machines ∗/
#endif

}

/∗ microstep - assumes that proper event is already in CurrEvent no
∗ conflict resolution currently. Everything will collapse
∗ on conflict
∗/

void microstep(void)

{
const transcell ∗t = trans + tranidx[CurrEvent.tag];
assert(CurrEvent.tag < NOEVENT);

if (tranidx[CurrEvent.tag] != TRANS MAX)

do {

unsigned int pc, nc;

UNMANGLE PCNC(t, pc, nc);

#if STATE WIDTH > 0

for (; pc > 0; --pc, ++t)

if (!active(∗t))
goto skiptr;

for (; nc > 0; --nc, ++t)

if (active(∗t))
goto skiptr;

#else

176 SCOPE Flat Engine

assert (pc==0 && nc==0); /∗ they could be left out... ∗/
#endif

fire(t); /∗ checking guard is deferred to fire ∗/
#if STATE WIDTH > 0

skiptr:while (∗t != STMRK)
++t;

#else

if (∗t != STMRK) ++t;
assert(∗t == STMRK);

#endif

++t;

} while (t < trans + tranidx[CurrEvent.tag + 1]);
}

/∗ assumes that external event is already in CurrEvent the newest
∗ configuration is always kept in next conf. prev conf is only
∗ occasionally used for guard computations.
∗/
void macrostep(void)

{

#ifdef SCOPE SIGNALQUEUE

while (CurrEvent.tag != NOEVENT) {
#endif

#if STATE WIDTH > 0

confiter i = 0;

for (; i < STATE WIDTH; ++i)

prev conf[i] = next conf[i];

assert(!conf empty(next conf));

#endif

microstep();

#ifdef SCOPE SIGNALQUEUE

dequeue1();

}
#endif

}

Appendix D

SCOPE Test Drivers

The following three drivers where used in tests and benchmarks. Remember
that the main kernel loop is normally implemented by the developer of
the embedded application. The loop typically involves communication with
sensor drivers. In benchmarking the code generation we have chosen to
keep this loop as simple as possible, to decrease its impact on the result of
benchmarks. The first driver, uses a minimal loop, that is just used for size
benchmarks. The second driver (CodGenC1 smokedrv) sends long random
traces of events to the model. The third driver was used to implement test
scripts. Similar drivers where written for IAR visualSTATE, to facilitate fair
comparison.

/∗ File : CodGenC1 tinydrv.c

Comment: Tiny driver used for code generation ∗size∗ comparisons
with visualSTATE

Copyright (C) 2001-2002 Andrzej Wasowski

This program is free software; you can redistribute it and/or

modify it under the terms of the GNU General Public License as

published by the Free Software Foundation; either version 2 of

the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA

02111-1307, USA.

∗/

178 SCOPE Test Drivers

int main (void)

{
volatile int i = 0;

st init();

while (1) {
CurrEvent.tag = i;

macrostep();

}
return 0;

}

/∗ File : CodGenC1 smokedrv.c

Comment: Small driver used for testing efficiency

Copyright (C) 2001-2002 Andrzej Wasowski

This program is free software; you can redistribute it and/or

modify it under the terms of the GNU General Public License as

published by the Free Software Foundation; either version 2 of

the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA

02111-1307, USA.

NOTE:

This is extremely similar to tiny driver, but also allows

parameter for number of iterations. Time is not measured

(use system "time" command or sthg similar).

∗/

#include <stdlib.h>

#include <stdio.h>

#include <time.h>

int init (int argc)

{
if (argc > 3) {
printf ("init,");

fflush(stdout);

}

179

st init();

}

int main (int argc,const char ∗ argv[])
{
int i = 0;

int j = 0;

unsigned max1 = atoi (argv[1]);

unsigned max2 = atoi (argv[2]) +1;

printf ("Smoke test. Events %d. Limit %d. Number of tries "

"%d...\n", EVENTNO, max2, max1);

srand(time(NULL));

init(argc);

/∗ deliberate code repetition. This way the test is only
∗ performed once and does not influence the speed
∗ characteristic significantly.
∗/
if (max2 != 0)

for(; i<max1; ++i) {

if (rand() % 100 == 0)

init(argc);

j = rand();

CurrEvent.tag = j % max2;

if (argc > 3) {
printf ("%d,", CurrEvent.tag);

fflush(stdout);

}
macrostep();

}
else for(; i < max1; ++i) {
init(argc);

if (argc > 3) {
printf ("%d,", CurrEvent.tag);

fflush(stdout);

}
macrostep();

}
printf ("done\n");
return 0;

}

180 SCOPE Test Drivers

/∗ File : CodGenC1 testdrv.c

Comment: Tiny driver used for testing of C1/CF

Copyright (C) 2001-2002 Andrzej Wasowski

This program is free software; you can redistribute it and/or

modify it under the terms of the GNU General Public License as

published by the Free Software Foundation; either version 2 of

the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA

02111-1307, USA.

∗/

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

/∗ defined in CodGenC1.c in DEBUG mode ∗/
extern void dump conf(void);

extern const char ∗ evdict[];

/∗ This function is basically an interpreter for a small test
∗ language, with syntax is as follows
∗
∗ cmd -> init | conf | macro e | quit
∗
∗ where
∗
∗ init, conf, macro and quit are kewywords and e is an event name.
∗ Semantics:
∗
∗ init - initialize the model
∗ conf - print current configuration on stdout (no changes to the
∗ model)

∗ quit - exit the program
∗ macro e - make e a current event and start a macrostep.
∗ autoconf - enters autoconf mode. In this mode configuration is
∗ printed automatically after processing of each

∗ command.

∗/
int main(void) {

181

int autoconf = 0;

/∗ unsafe but this is only a test program ∗/
char buf[400];

int i;

while (1) {

if (scanf("%s", buf)==EOF)

exit(EXIT FAILURE);

else if (strcmp(buf, "autoconf") == 0)

autoconf = 1;

else if (strcmp(buf, "quit") == 0)

exit(EXIT SUCCESS);

else if (strcmp(buf, "conf") == 0) {
if (!autoconf)

dump conf();

} else if (strcmp(buf, "init") == 0) {
st init();

} else if (strcmp (buf, "macro") == 0) {

if (scanf ("%s", buf) == EOF)

exit (EXIT SUCCESS);

for (i = 0; i < EVENTNO; i++) {
if (strcmp(evdict[i],buf) == 0) {
CurrEvent.tag = i;

macrostep();

break;

}
}
if (i == EVENTNO) {

fprintf(stderr, "Unknown event.\n");
exit (EXIT FAILURE);

}
} else {
fprintf (stderr, "Syntax error.\n");
exit(EXIT FAILURE);

}
if (autoconf) dump conf();

}
return 0;

}

E.1 A Simple Controller Model 183

Appendix E

An Example of SCOPE
Generated Code

E.1 A Simple Controller Model

184 An Example of SCOPE Generated Code

E.2 Hierarchy Tree

Generated using SCOPE and visualized using graphviz:

T1

Regulator

T2

Listener AlarmHandler AM TM Regulator

Listener AlarmActive AlarmInactive Manual Auto ColdWaitForAlarm JustRight TooHot

Region1

WaitForAlarm Normal

NotDefrost Defrost

Region1

Cooling Nothing

E.3 Hierarchical Encoding 185

E.3 Hierarchical Encoding

/∗∗∗
∗ This is a generated file! Don’t edit it manually.
∗ File name : ekc-c1.h

∗ System name : EKC

∗ Source file : Project.vsp

∗ Generation time: 1126125273.525
∗ Code generator : CodGenC1
∗∗/

/∗ fixed width integer types ∗/

#include <VSTypes.h>

/∗ API interface ∗/

void st init(void);

void macrostep(void);

/∗ inferred type for referring signals and events ∗/

typedef VS UINT8 eventtag;

/∗ event names ∗/

#define AlarmTimeOut 0

#define DefrostIntervalTimeOut 1

#define DefrostTimeOut 2

#define TimeTick 3

#define automatic 4

#define calibrate 5

#define defroststart 6

#define manual 7

#define resetalarm 8

#define setalarmdelay 9

#define setpoint 10

/∗ event types ∗/
struct Structcalibrate {
VS INT8 f0;

};

struct Structsetalarmdelay {
VS UINT8 f0;

};

struct Structsetpoint {
VS INT8 f0;

186 An Example of SCOPE Generated Code

};

/∗ union of event types ∗/
struct StructEvent {
eventtag tag;

union {
struct Structsetpoint E setpoint;

struct Structsetalarmdelay E setalarmdelay;

struct Structcalibrate E calibrate;

} fields;

};

extern struct StructEvent CurrEvent;

/∗ model constants ∗/
#define DefrostInterval 1

#define DefrostTime 15

#define Differential 2

#define LowerDeviation -10

#define MinutesPerHour 10

#define Temp 20

#define UpperDeviation 10

/∗ variable declarations (none) ∗/

/∗ number of events ∗/
#define EVENTNO 13

#define NOEVENT EVENTNO

E.3 Hierarchical Encoding 187

/∗∗∗
∗ This is a generated file! Don’t edit it manually.
∗ File name : ekc-c1.c

∗ System name : EKC

∗ Source file : Project.vsp

∗ Generation time: 1126125273.547
∗ Code generator : CodGenC1
∗∗/

/∗ include public information ∗/
#include "ekc-c1.h"

/∗ prototypes for functions used in actions/guards ∗/
#include "ekc extern.h"

/∗ Mnemonics for LR-bytecode (used as comments) in arrays ∗/
#define HIST

#define EVNT /∗ event reference ∗/
#define ENEX(n) /∗ entry/exit ref ∗/
#define ACGD(n) /∗ action/guard ∗/
#define PCNC(n) /∗ pos/neg-cond ∗/
#define ORST /∗ or-state ref ∗/
#define ANDST /∗ and-state ref ∗/

/∗ inferred type of action refs ∗/
typedef VS UINT8 actionref;

/∗ inferred type of guard refs ∗/
typedef VS UINT8 guardref;

/∗ inferred type of or-state ref ∗/
typedef VS UINT8 orstref;

/∗ inferred type of and-state ref ∗/
typedef VS UINT8 andstref;

/∗ inferred return type for all actions ∗/
typedef VS UINT8 signalref;

/∗ inferred type for refering to trans ∗/
typedef VS UINT8 tranref;

/∗ type of iterators over trans (|traniter| >= |tranref|) ∗/
typedef VS UINT8 traniter;

/∗ type of configurations ∗/
typedef andstref conf[10];

/∗ type for integer iterators over configuration arrays ∗/

188 An Example of SCOPE Generated Code

typedef VS UINT8 confiter;

/∗ type for integer iterators over sets of targets ∗/
typedef VS UINT8 tgtsiter;

/∗ type of integer iterators over signal queue elements ∗/
typedef VS UINT8 queueiter;

/∗ model-independent types (here for simplicity) ∗/
typedef andstref horcell;

typedef orstref handcell;

typedef andstref transcell;

typedef andstref historyref;

/∗ type of symbols suppressed in release mode ∗/

/∗ preprocessor constants for bytecode markers ∗/
#define STMRK 0

#define HMRK 1

#define IMRK 2

#define FPSCOP 3

#define NFPSCOP 4

#define MARKNO 5

/∗ signal queue controlling macros and declarations ∗/
#define SCOPE SIGNALQUEUE

#define QUEUE LENGTH 10

static eventtag queue[QUEUE LENGTH] = {
/∗0∗/ NOEVENT, NOEVENT, NOEVENT, NOEVENT, NOEVENT, NOEVENT,
/∗6∗/ NOEVENT, NOEVENT, NOEVENT, NOEVENT,

};
#define SET RETURN SIGNAL(s) { vssignal = (s);}

/∗ variable definitions ∗/
static VS UINT8 AlarmDelay = 30;

static VS INT8 CalcTemp = 0;

static VS UCHAR DefrostCount = 0;

static VS UINT8 DefrostIntervalCount = 0;

static VS INT8 SetPoint = 3;

/∗ current event holder ∗/
struct StructEvent CurrEvent = { EVENTNO };

/∗ history related control (switch and vector if needed) ∗/
#undef SCOPE HISTORY

/∗ prievious configuration ∗/
static conf prev conf = {
/∗0∗/ STMRK, STMRK, STMRK, STMRK, STMRK, STMRK, STMRK,

E.3 Hierarchical Encoding 189

/∗7∗/ STMRK, STMRK, STMRK,
};

/∗ next configuration ∗/
static conf next conf = {
/∗0∗/ STMRK, STMRK, STMRK, STMRK, STMRK, STMRK, STMRK,
/∗7∗/ STMRK, STMRK, STMRK,

};

/∗ targets pool ∗/
static conf targets = {
/∗ 0 ∗/ STMRK,

};

/∗ or-state projection of hierarchy ∗/
const horcell hor[18] = {
/∗ 0 ∗/ HMRK, HMRK, ANDST 45, ANDST 43, ANDST 37,
/∗ 5 ∗/ ANDST 39, ANDST 33, ANDST 35, ANDST 22, ANDST 28,
/∗ 10 ∗/ ANDST 31, ANDST 24, ANDST 26, ANDST 14, ANDST 20,
/∗ 15 ∗/ ANDST 5, ANDST 10, STMRK,

};

/∗ dictionary for accessing hor ∗/
const VS UINT8 hor dict[10] = {
/∗ 0 ∗/ 0, 0, 2, 3, 4, 6, 8, 11, 13, 15,

};

/∗ macro for accessing hor ∗/
#define GET OR(s) (hor+ hor dict[(s)])

/∗ and-state projection of hierarchy ∗/
const handcell hand[56] = {
/∗ 0 ∗/ HMRK, HMRK, HMRK, HMRK, HMRK,
/∗ 5 ∗/ ORST 9, ANDST 5, STMRK, ENEX(2) 11, 10,
/∗ 10 ∗/ ORST 9, ANDST 10, STMRK, ENEX(1) 9, ORST 8,
/∗ 15 ∗/ ANDST 5, ORST 9, STMRK, ENEX(2) 8, 7,
/∗ 20 ∗/ ORST 8, ANDST 20, ORST 6, ANDST 22, ORST 7,
/∗ 25 ∗/ ANDST 24, ORST 7, ANDST 26, ORST 6, ANDST 24,
/∗ 30 ∗/ ORST 7, ORST 6, ANDST 31, ORST 5, ANDST 33,
/∗ 35 ∗/ ORST 5, ANDST 35, ORST 4, ANDST 37, ORST 4,
/∗ 40 ∗/ ANDST 39, STMRK, ENEX(1) 6, ORST 3, ANDST 43,
/∗ 45 ∗/ ORST 2, ANDST 5, ORST 3, ORST 4, ORST 5,
/∗ 50 ∗/ ORST 6, ORST 8, STMRK, ANDST 5, ORST 2,
/∗ 55 ∗/ STMRK,

};

/∗ hand is accessed directly. ∗/

/∗ macro for accessing hand ∗/

190 An Example of SCOPE Generated Code

#define GET AND(s) (hand+ (s))

/∗ determine if model uses signal lists ∗/
#undef SCOPE SLIST

/∗ define if configuration set implemented using lists
(flags otherwise) ∗/

#undef SCOPE CONFSET

/∗ activate needed exit modes ∗/
#undef PURE EXIT

#define IMPURE EXIT

/∗ no multiple signals on single transition ∗/

/∗ action dispatcher ∗/
void exec (const actionref a) {
#ifdef SCOPE SIGNALQUEUE

signalref vssignal = NOEVENT;

extern void enqueue1 (eventtag);

#ifdef SCOPE SLIST

extern void enqueueList (signalref);

#endif

#endif

switch (a) {
case 0:

case 1:

case 2:

case 3:

case 4:

case 5:

break;

case 6:

SET RETURN SIGNAL(11);

break;

case 7:

TimerStart(DefrostTime,DefrostTimeOut);

defrostrelayon();

break;

case 8:

defrostrelayoff();

break;

case 9:

DefrostIntervalCount = (MinutesPerHour)∗(DefrostInterval);
break;

case 10:

compressoron();

break;

E.3 Hierarchical Encoding 191

case 11:

compressoroff();

break;

case 12:

AlarmDelay = CurrEvent.fields. E setalarmdelay.f0;

break;

case 13:

CalcTemp = (Temp)+(CurrEvent.fields. E calibrate.f0);

break;

case 14:

SetPoint = CurrEvent.fields. E setpoint.f0;

break;

case 15:

alarmrelayoff();

break;

case 16:

alarmrelayon();

break;

case 17:

SET RETURN SIGNAL(12);

break;

case 18:

TimerStart(AlarmDelay,AlarmTimeOut);

SET RETURN SIGNAL(12);

break;

case 19:

TimerStart(DefrostIntervalCount,DefrostIntervalTimeOut);

break;

}

#ifdef SCOPE SIGNALQUEUE

#ifdef SCOPE SLIST

if (vssignal < NOEVENT) enqueue1(vssignal);

else if (vssignal > NOEVENT)

enqueueList (vssignal-NOEVENT-1);

#else

if (vssignal != NOEVENT) enqueue1(vssignal);

#endif

#endif

}

/∗ guards dispatcher ∗/
int eval (const guardref g) {
switch (g) {
case 5:

return (((CalcTemp)>((SetPoint)+(Differential)))&&((CalcTemp)>

(((SetPoint)+(Differential))+(UpperDeviation))));

case 6:

return

192 An Example of SCOPE Generated Code

((CalcTemp)<(((SetPoint)+(Differential))+(UpperDeviation)));

case 7:

return (((CalcTemp)<((SetPoint)+(LowerDeviation)))&&((CalcTemp)<

((SetPoint)+(Differential))));

case 8:

return (((CalcTemp)>((SetPoint)+(LowerDeviation)))&&((CalcTemp)>

((SetPoint)+(Differential))));

case 9:

return (((CalcTemp)<((SetPoint)+(Differential)))&&((CalcTemp)>

(((SetPoint)+(Differential))+(UpperDeviation))));

case 10:

return ((CalcTemp)>((SetPoint)+(LowerDeviation)));

case 11:

return (1);

}
return 1;

}

/∗ transitions array ∗/
#define TRANS MAX 143

const transcell trans[TRANS MAX] = {
/∗ 0 ∗/ PCNC(2) 1, 0, ANDST 37, ACGD(1) 16, HMRK,
/∗ 5 ∗/ ANDST 39, STMRK, PCNC(2) 2, 0, ANDST 33,
/∗ 10 ∗/ ANDST 14, ACGD(1) 19, HMRK, ANDST 20, STMRK,
/∗ 15 ∗/ PCNC(2) 1, 0, ANDST 20, HMRK, ANDST 14,
/∗ 20 ∗/ STMRK, PCNC(2) 1, 0, ANDST 35, HMRK,
/∗ 25 ∗/ ANDST 33, STMRK, PCNC(2) 1, 0, ANDST 43,
/∗ 30 ∗/ ACGD(1) 13, HMRK, ANDST 43, STMRK, PCNC(2) 1,
/∗ 35 ∗/ 0, ANDST 14, HMRK, ANDST 20, STMRK,
/∗ 40 ∗/ PCNC(2) 2, 0, ANDST 33, ANDST 14, HMRK,
/∗ 45 ∗/ ANDST 35, ANDST 5, STMRK, PCNC(2) 1, 1,
/∗ 50 ∗/ ANDST 33, ANDST 14, HMRK, ANDST 35, IMRK,
/∗ 55 ∗/ ORST 8, ANDST 5, STMRK, PCNC(2) 1, 0,
/∗ 60 ∗/ ANDST 39, ACGD(1) 15, HMRK, ANDST 37, STMRK,
/∗ 65 ∗/ PCNC(2) 1, 0, ANDST 43, ACGD(1) 12, HMRK,
/∗ 70 ∗/ ANDST 43, STMRK, PCNC(2) 1, 0, ANDST 43,
/∗ 75 ∗/ ACGD(1) 14, HMRK, ANDST 43, STMRK, PCNC(2) 1,
/∗ 80 ∗/ 0, ANDST 24, ACGD(2) 18, 11, HMRK,
/∗ 85 ∗/ ANDST 26, STMRK, PCNC(2) 1, 0, ANDST 26,
/∗ 90 ∗/ ACGD(2) 17, 10, HMRK, ANDST 24, STMRK,
/∗ 95 ∗/ PCNC(2) 1, 0, ANDST 22, ACGD(2) 18, 9,
/∗ 100 ∗/ HMRK, ANDST 31, STMRK, PCNC(2) 1, 0,
/∗ 105 ∗/ ANDST 22, ACGD(2) 17, 8, IMRK, ORST 6,
/∗ 110 ∗/ ANDST 24, STMRK, PCNC(2) 1, 0, ANDST 24,
/∗ 115 ∗/ ACGD(2) 17, 7, HMRK, ANDST 22, STMRK,
/∗ 120 ∗/ PCNC(2) 1, 0, ANDST 31, ACGD(2) 17, 6,
/∗ 125 ∗/ HMRK, ANDST 22, STMRK, PCNC(2) 3, 0,
/∗ 130 ∗/ ANDST 28, ANDST 33, ANDST 5, HMRK, ANDST 10,

E.3 Hierarchical Encoding 193

/∗ 135 ∗/ STMRK, PCNC(2) 2, 0, ANDST 33, ANDST 10,
/∗ 140 ∗/ HMRK, ANDST 5, STMRK,

};

/∗ dictionary of transition lists ∗/
const tranref tranidx[14] = {
/∗ 0 ∗/ 0, 7, 15, 143, 21, 27, 34, 40, 58, 65,
/∗ 10 ∗/ 72, 79, 128, 143,

};

/∗ symbolic names of or-states supressed in release mode ∗/

/∗ symbolic names of and-states supressed in release mode ∗/

/∗ symbolic names of events left out in release mode. ∗/

/∗ reference to topmost and-state ∗/
#define ROOT STATE 52

/∗ bound on configuration size ∗/
#define STATE WIDTH 10

/∗ bound on target width ∗/
#define TGT WIDTH 1

/∗ macro for accessing encoded pos/neg counters ∗/
#define UNMANGLE PCNC(ptr,i,j) { { (i) = + (∗((ptr)++)); } \

{ (j) = + (∗((ptr)++)); } }

/∗ macro for accessing encoded ac/gd references ∗/
#define UNMANGLE ACGD(ptr,i,j) { (i) = ∗ptr; if (i >= MARKNO) \

(ptr)++; (j) = ∗ptr; \
if ((j) >= MARKNO) (ptr)++;}

/∗ get enter action for state s ∗/
#define GET ENTER(s) ((∗(GET AND(s)-2) == STMRK \

||(∗(GET AND(s)-3) == STMRK)) \
?∗(GET AND(s)-1) : STMRK)

/∗ get exit action for state s ∗/
#define GET EXIT(s) ((∗(GET AND(s)-3) == STMRK) \

?∗(GET AND(s)-2) : STMRK)

/∗ determine if arbitrary guards are used ∗/
#define SCOPE GUARDS

/∗ runtime interpreter ∗/
#include <CodGenC1.c>

194 An Example of SCOPE Generated Code

E.4 Flat Encoding

/∗∗∗
∗ This is a generated file! Don’t edit it manually.
∗ File name : ekc-cf.h

∗ System name : EKC

∗ Source file : Project.vsp

∗ Generation time: 1126125278.289
∗ Code generator : CodGenCF
∗∗/

/∗ fixed width integer types ∗/
#include <VSTypes.h>

/∗ API interface ∗/
void st init(void);

void macrostep(void);

/∗ inferred type for referring signals and events ∗/
typedef VS UINT8 eventtag;

/∗ event names ∗/
#define AlarmTimeOut 0

#define DefrostIntervalTimeOut 1

#define DefrostTimeOut 2

#define TimeTick 3

#define automatic 4

#define calibrate 5

#define defroststart 6

#define manual 7

#define resetalarm 8

#define setalarmdelay 9

#define setpoint 10

/∗ event types ∗/
struct Structcalibrate {
VS INT8 f0;

};

struct Structsetalarmdelay {
VS UINT8 f0;

};

struct Structsetpoint {
VS INT8 f0;

};

/∗ union of event types ∗/
struct StructEvent {

E.4 Flat Encoding 195

eventtag tag;

union {
struct Structsetpoint E setpoint;

struct Structsetalarmdelay E setalarmdelay;

struct Structcalibrate E calibrate;

} fields;
};

extern struct StructEvent CurrEvent;

/∗ model constants ∗/
#define DefrostInterval 1

#define DefrostTime 15

#define Differential 2

#define LowerDeviation -10

#define MinutesPerHour 10

#define Temp 20

#define UpperDeviation 10

/∗ variable declarations ∗/

/∗ number of events ∗/
#define EVENTNO 13

#define NOEVENT EVENTNO

196 An Example of SCOPE Generated Code

/∗∗∗
∗ This is a generated file! Don’t edit it manually.
∗ File name : ekc-cf.c

∗ System name : EKC

∗ Source file : Project.vsp

∗ Generation time: 1126125278.299
∗ Code generator : CodGenCF
∗∗/

/∗ include public information ∗/
#include "ekc-cf.h"

/∗ prototypes for functions used in actions/guards ∗/
#include "ekc extern.h"

/∗ Mnemonics for LR-bytecode (used as comments) in arrays ∗/
#define EVNT /∗ event reference ∗/
#define ACGD(n) /∗ action/guard ∗/
#define AC(n) /∗ action(no guard)∗/
#define PCNC(n) /∗ pos/neg-cond ∗/
#define MCHN /∗ machine ref ∗/
#define STATE /∗ basic state ref ∗/

/∗ inferred type of action refs ∗/
typedef VS UINT8 actionref;

/∗ inferred type of guard refs ∗/
typedef VS UINT8 guardref;

/∗ inferred type of or-state ref ∗/
typedef VS UINT8 mchnref;

/∗ inferred type of and-state ref ∗/
typedef VS UINT8 stref;

/∗ inferred return type for all actions ∗/
typedef VS UINT8 signalref;

/∗ inferred type for refering to trans ∗/
typedef VS UINT8 tranref;

/∗ type of iterators over trans (|traniter| >= |tranref|) ∗/
typedef VS UINT8 traniter;

/∗ type of configurations ∗/
typedef stref conf[6];

/∗ type for integer iterators over configuration arrays ∗/
typedef VS UINT8 confiter;

E.4 Flat Encoding 197

/∗ type for integer iterators over sets of targets ∗/

/∗∗ unused in CodGenCF ∗∗/

/∗ type of integer iterators over signal queue elements ∗/
typedef VS UINT8 queueiter;

/∗ model-independent types (here for simplicity) ∗/
typedef mchnref anatomycell;

typedef stref transcell;

/∗ type of symbols suppressed in release mode ∗/

/∗ preprocessor constants for bytecode markers ∗/
#define STMRK 0

/∗ signal queue controlling macros and declarations ∗/
#define SCOPE SIGNALQUEUE

#define QUEUE LENGTH 10

static eventtag queue[QUEUE LENGTH] = {
/∗ 0 ∗/ NOEVENT, NOEVENT, NOEVENT, NOEVENT, NOEVENT, NOEVENT,
/∗ 6 ∗/ NOEVENT, NOEVENT, NOEVENT, NOEVENT,

};
#define SET RETURN SIGNAL(s) { vssignal = (s);}

/∗ variable definitions ∗/
static VS UINT8 AlarmDelay = 30;

static VS INT8 CalcTemp = 0;

static VS UCHAR DefrostCount = 0;

static VS UINT8 DefrostIntervalCount = 0;

static VS INT8 SetPoint = 3;

/∗ current event holder ∗/
struct StructEvent CurrEvent = { EVENTNO };

/∗ history related control (switch and vector if needed) ∗/

/∗∗ unused in CodGenCF ∗∗/

/∗ prievious configuration ∗/
static conf prev conf = {
/∗ 0 ∗/ STMRK, STMRK, STMRK, STMRK, STMRK, STMRK,

};

/∗ next configuration ∗/
static conf next conf = {
/∗ 0 ∗/ STMRK, STMRK, STMRK, STMRK, STMRK, STMRK,

};

198 An Example of SCOPE Generated Code

/∗ targets pool ∗/

/∗∗ unused in CodGenCF ∗∗/

/∗ or-state projection of hierarchy ∗/

/∗ hor is accessed directly. ∗/

/∗ macro for accessing hor ∗/

/∗∗ unused in CodGenCF ∗∗/

/∗ and-state projection of hierarchy ∗/

const anatomycell anatomy[14] = {
/∗ 0 ∗/ STMRK, MCHN 0, MCHN 0, MCHN 4, MCHN 2,
/∗ 5 ∗/ MCHN 2, MCHN 3, MCHN 1, MCHN 4, MCHN 5,
/∗ 10 ∗/ MCHN 5, MCHN 1, MCHN 2, MCHN 3,

};

/∗ hand is accessed directly. ∗/

/∗ macro for accessing hand ∗/

/∗∗ unused in CodGenCF ∗∗/

/∗ determine if model uses signal lists ∗/
#undef SCOPE SLIST

/∗ define if configuration set implemented using lists (flags
otherwise) ∗/

/∗∗ unused in CodGenCF ∗∗/

/∗ activate needed exit modes ∗/

/∗∗ unused in CodGenCF ∗∗/

/∗ no multiple signals on single transition ∗/

/∗ action dispatcher ∗/
void exec (const actionref a) {
#ifdef SCOPE SIGNALQUEUE

signalref vssignal = NOEVENT;

extern void enqueue1 (eventtag);

#ifdef SCOPE SLIST

extern void enqueueList (signalref);

#endif

E.4 Flat Encoding 199

#endif

switch (a) {
case 0:

case 1:

AlarmDelay = CurrEvent.fields. E setalarmdelay.f0;

SET RETURN SIGNAL(11);

break;

case 2:

CalcTemp = (Temp)+(CurrEvent.fields. E calibrate.f0);

SET RETURN SIGNAL(11);

break;

case 3:

SetPoint = CurrEvent.fields. E setpoint.f0;

SET RETURN SIGNAL(11);

break;

case 4:

alarmrelayoff();

break;

case 5:

alarmrelayon();

break;

case 6:

break;

case 7:

defrostrelayoff();

DefrostIntervalCount = (MinutesPerHour)∗(DefrostInterval);
break;

case 8:

compressoroff();

break;

case 9:

SET RETURN SIGNAL(12);

break;

case 10:

TimerStart(AlarmDelay,AlarmTimeOut);

SET RETURN SIGNAL(12);

break;

case 11:

TimerStart(DefrostIntervalCount,DefrostIntervalTimeOut);

TimerStart(DefrostTime,DefrostTimeOut);

defrostrelayon();

break;

case 12:

TimerStart(DefrostTime,DefrostTimeOut);

defrostrelayon();

break;

case 13:

compressoron();

200 An Example of SCOPE Generated Code

break;

}

#ifdef SCOPE SIGNALQUEUE

#ifdef SCOPE SLIST

if (vssignal < NOEVENT) enqueue1(vssignal);

else if (vssignal > NOEVENT)

enqueueList (vssignal-NOEVENT-1);

#else

if (vssignal != NOEVENT) enqueue1(vssignal);

#endif

#endif

}

/∗ guards dispatcher ∗/
int eval (const guardref g) {
switch (g) {
case 1:

return (((CalcTemp)>((SetPoint)+(Differential)))&&((CalcTemp)>

(((SetPoint)+(Differential))+(UpperDeviation))));

case 2:

return

((CalcTemp)<(((SetPoint)+(Differential))+(UpperDeviation)));

case 3:

return (((CalcTemp)<((SetPoint)+(LowerDeviation)))&&((CalcTemp)<

((SetPoint)+(Differential))));

case 4:

return (((CalcTemp)>((SetPoint)+(LowerDeviation)))&&((CalcTemp)>

((SetPoint)+(Differential))));

case 5:

return (((CalcTemp)<((SetPoint)+(Differential)))&&((CalcTemp)>

(((SetPoint)+(Differential))+(UpperDeviation))));

case 6:

return ((CalcTemp)>((SetPoint)+(LowerDeviation)));

case 7:

return (1);

}
return 1;

}

/∗ transitions array ∗/
#define TRANS MAX 166

const transcell trans[TRANS MAX] = {
/∗ 0 ∗/ PCNC(2) 1, 0, STATE 10, ACGD(2) 5, 1,
/∗ 5 ∗/ STATE 9, STMRK, PCNC(2) 3, 0, STATE 11,
/∗ 10 ∗/ STATE 3, STATE 1, ACGD(2) 8, 1, STMRK,
/∗ 15 ∗/ PCNC(2) 2, 0, STATE 3, STATE 1, ACGD(2) 11,
/∗ 20 ∗/ 1, STATE 2, STMRK, PCNC(2) 1, 0,

E.4 Flat Encoding 201

/∗ 25 ∗/ STATE 2, ACGD(2) 7, 1, STATE 1, STATE 7,
/∗ 30 ∗/ STMRK, PCNC(2) 1, 0, STATE 8, ACGD(2) 6,
/∗ 35 ∗/ 1, STATE 3, STMRK, PCNC(2) 0, 0,
/∗ 40 ∗/ ACGD(2) 2, 1, STMRK, PCNC(2) 2, 0,
/∗ 45 ∗/ STATE 11, STATE 1, ACGD(2) 8, 1, STMRK,
/∗ 50 ∗/ PCNC(2) 1, 0, STATE 1, ACGD(2) 12, 1,
/∗ 55 ∗/ STATE 2, STMRK, PCNC(2) 3, 0, STATE 11,
/∗ 60 ∗/ STATE 3, STATE 1, ACGD(2) 8, 1, STMRK,
/∗ 65 ∗/ PCNC(2) 2, 0, STATE 3, STATE 1, ACGD(2) 6,
/∗ 70 ∗/ 1, STATE 8, STATE 7, STMRK, PCNC(2) 2,
/∗ 75 ∗/ 0, STATE 3, STATE 2, ACGD(2) 7, 1,
/∗ 80 ∗/ STATE 8, STATE 1, STATE 7, STMRK, PCNC(2) 1,
/∗ 85 ∗/ 0, STATE 9, ACGD(2) 4, 1, STATE 10,
/∗ 90 ∗/ STMRK, PCNC(2) 0, 0, ACGD(2) 1, 1,
/∗ 95 ∗/ STMRK, PCNC(2) 0, 0, ACGD(2) 3, 1,
/∗ 100 ∗/ STMRK, PCNC(2) 2, 0, STATE 6, STATE 12,
/∗ 105 ∗/ ACGD(2) 10, 7, STATE 13, STMRK, PCNC(2) 2,
/∗ 110 ∗/ 0, STATE 13, STATE 12, ACGD(2) 9, 6,
/∗ 115 ∗/ STATE 6, STMRK, PCNC(2) 1, 0, STATE 5,
/∗ 120 ∗/ ACGD(2) 10, 5, STATE 4, STMRK, PCNC(2) 1,
/∗ 125 ∗/ 0, STATE 5, ACGD(2) 9, 4, STATE 12,
/∗ 130 ∗/ STATE 6, STMRK, PCNC(2) 2, 0, STATE 6,
/∗ 135 ∗/ STATE 12, ACGD(2) 9, 3, STATE 5, STMRK,
/∗ 140 ∗/ PCNC(2) 1, 0, STATE 4, ACGD(2) 9, 2,
/∗ 145 ∗/ STATE 5, STMRK, PCNC(2) 4, 0, STATE 7,
/∗ 150 ∗/ STATE 3, STATE 12, STATE 1, ACGD(2) 13, 1,
/∗ 155 ∗/ STATE 11, STMRK, PCNC(2) 3, 0, STATE 11,
/∗ 160 ∗/ STATE 3, STATE 1, ACGD(2) 8, 1, STATE 7,
/∗ 165 ∗/ STMRK,

};

/∗ dictionary of transition lists ∗/
const tranref tranidx[14] = {
/∗ 0 ∗/ 0, 7, 23, 166, 31, 38, 43, 57, 84, 91,
/∗ 10 ∗/ 96, 101, 147, 166,

};

/∗ symbolic names of or-states supressed in release mode ∗/

/∗ symbolic names of and-states supressed in release mode ∗/

/∗ symbolic names of events left out in release mode. ∗/

/∗ reference to topmost and-state ∗/

/∗∗ unused in CodGenCF ∗∗/

/∗ bound on configuration size ∗/
#define STATE WIDTH 6

202 An Example of SCOPE Generated Code

/∗ bound on target width ∗/

/∗∗ unused in CodGenCF ∗∗/

/∗ macro for accessing encoded pos/neg counters ∗/
#define UNMANGLE PCNC(ptr,i,j) { { (i) = + (∗((ptr)++)); }\

{ (j) = + (∗((ptr)++)); } }

/∗ macro for accessing encoded ac/gd references ∗/
#define UNMANGLE ACGD(ptr,i,j) { (i) = ∗(ptr++); (j) = ∗(ptr++);}

/∗ get enter action for state s ∗/

/∗∗ unused in CodGenCF ∗∗/

/∗ get exit action for state s ∗/

/∗∗ unused in CodGenCF ∗∗/

/∗ determine if arbitrary guards are used ∗/
#define SCOPE GUARDS

/∗ runtime interpreter ∗/
#include <CodGenCF.c>

/∗ initial transition ∗/
void st init(void) {

#if STATE WIDTH > 0

confiter i = 0;

static const stref iniconf[6] = {
/∗ 0 ∗/ STATE 1, STATE 7, STATE 5, STATE 6, STATE 3,
/∗ 5 ∗/ STATE 10,

};
for (i=0; i < STATE WIDTH; i++)

next conf[i]=iniconf[i];

#endif

DefrostIntervalCount = (MinutesPerHour)∗(DefrostInterval);
enqueue1(11);

#ifdef SCOPE SIGNALQUEUE

dequeue1();

macrostep();

#endif

}

E.5 Stub Drivers 203

E.5 Stub Drivers

The following drivers are empty stubs used in compilation of
size-benchmarks and speed benchmarks. SCOPE can also generate stubs
that output names of actions to standard output for testing purposes (not
shown here).

/∗ This is a generated file!
Do not edit manually.

File name: ekc extern.h ∗/

#include <VSTypes.h>

extern VS VOID alarmrelayoff(void);

extern VS VOID alarmrelayon(void);

extern VS VOID compressoroff(void);

extern VS VOID compressoron(void);

extern VS VOID defrostrelayoff(void);

extern VS VOID defrostrelayon(void);

extern VS VOID TimerStart(VS UINT par0, VS UINT par1);

/∗ This is a generated file!
Do not edit it manually.

File name: ekc extern.c ∗/

#include <VSTypes.h>

#include "ekc extern.h"

VS VOID alarmrelayoff(void) { return; }

VS VOID alarmrelayon(void) { return; }

VS VOID compressoroff(void) { return; }

VS VOID compressoron(void) { return; }

VS VOID defrostrelayoff(void) { return; }

VS VOID defrostrelayon(void) { return; }

VS VOID TimerStart(VS UINT par0, VS UINT par1) { return; }

Bibliography

[1] Jauhar Ali and Jiro Tanaka. Converting statecharts into Java code.
In 5th International Conference on Integrated Design and Process
Technology (IDPT’99), Dallas,Texas, June 1999. See p. 42

[2] Rajeev Alur and David L. Dill. A theory of timed automata.
Theoretical Computer Science, 126(2):183–235, 1994. See p. 54

[3] Rajeev Alur, Sampath Kannan, and Mihalis Yannakakis.
Communicating hierarchical state machines. In Jiŕı Wiedermann,
Peter van Emde Boas, and Mogens Nielsen, editors, 26th
International Colloquium on Automata, Languages and Programming
(ICALP), volume 1644 of Lecture Notes in Computer Science, pages
169–178, Prague, Czech Republic, July 1999. Springer-Verlag. See p.
73, 96

[4] Tobias Amnell, Elena Fersman, and Paul Pettersson. Code synthesis
for timed automata. Nordic Journal of Computing, 9(4), 2003. See
p. 54

[5] G. Behrmann, K. G. Larsen, H. R. Andersen, H. Hulgaard, and
J. Lind Nielsen. Verification of hierarchical state/event systems using
reusability and compositionality. In International Conference on
Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), volume 1579 of Lecture Notes in Computer Science, pages
163–177, Amsterdam, The Netherlands, March 1999.
Springer-Verlag. See p. 22, 73, 96

[6] Gerd Behrmann, Johan Bengtsson, Alexandre David, Kim G. Larsen,
Paul Pettersson, and Wang Yi. Uppaal implementation secrets. In
Proc. of 7th International Symposium on Formal Techniques in
Real-Time and Fault Tolerant Systems, 2002. See p. 45

[7] Gerd Behrmann, Kaare Kristoffersen, and Kim G.Larsen. Code
generation for hierarchical systems. In NWPT’99 – The 11th Nordic
Workshop on Programming Theory, Uppsala, Sweden, September
1999. See p. 95

BIBLIOGRAPHY 205

[8] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas
Halbwachs, Paul Le Guernic, and Robert de Simone. The
synchronous languages 12 years later. Proceedings of the IEEE,
91(1):64–83, January 2003. See p. 6

[9] Beatrice Bérard, Michel Bidoit, Alain Finkel, Francois Laroussinie,
Antoine Petit, Laure Petrucci, Philippe Schnoebelen, and Pierre
McKenzie. Systems and Software Verification. Model-Checking
Techniques and Tools. Springer-Verlag, Berlin-Heidelberg, 2001. See
p. 112

[10] Gérard Berry. The Esterel v5 language primer. version v5 91, July
2000. See p. 17, 31

[11] Gérard Berry. The foundations of Esterel. In Gordon Plotkin, Colin
Stirling, and Mads Tofte, editors, Proof, Language and Interaction.
Essays in Honour of Robin Milner, Foundations of Computing
Series, pages 425–454. The MIT Press, Cambridge, Massachusetts,
2000. See p. 124

[12] Robert V. Binder. Testing Object-Oriented Systems. Models,
Patterns and Tools. Addison-Wesley, 2000. See p. 73

[13] Dag Björklund, Johan Lilius, and Ivan Porres. Towards efficient code
synthesis from statecharts. In Andy Evans, Robert France, and Ana
Moreira Bernhard Rumpe, editors, Practical UML-Based Rigorous
Development Methods - Countering or Integrating the eXtremists.
Workshop of the pUML-Group., Lecture Notes in Informatics P-7,
Toronto, Canada, October 2001. GI. See p. 95

[14] Kirill Bogdanov and Mike Holcombe. Statechart testing method for
aircraft control systems. Software Testing, Verification and
Reliability, 1(11):39–54, 2001. See p. 54

[15] Kirill Bogdanov and Mike Holcombe. Properties of concurrently
taken transitions of Harel statecharts. In Workshop on Semantic
Foundations of Engineering Design Languages (SFEDL), Grenoble,
France, April 2002. See p. 54, 96

[16] Gregory W. Bond, Franjo Ivancic, Nils Klarlund, and Richard
Trefler. Eclipse feature logic analysis. In 2nd IP-Telephony
Workshop, pages 100–107, New York City, USA, April 2001. See p.
73, 96

[17] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified
Modelling Language: User Guide. Addison-Wesley, 1999. See p. 40,
43

206 BIBLIOGRAPHY

[18] Randal E. Bryant. Graph-based algorithms for boolean function
manipulation. IEEE Transactions on Computers, 35(8):677–691,
August 1986. See p. 46

[19] Charter—a tiny Java code generator for statecharts, September 2003.
http://www.mini.pw.edu.pl/~wasowski/projects/charter/. See
p. 48, 54

[20] Edmund M. Clarke. Model Checking. The MIT Press, December
1999. See p. 6, 112

[21] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms. The MIT Press, 2nd
edition, 2001. See p. 124

[22] Atmel Corporation. MARC4 microcontroller.
http://www.atmel.com/products/MARC4. See p. 3

[23] Werner Damm, Bernhard Josko, Hardi Hungar, and Amir Pnueli. A
compositional real-time semantics of STATEMATE designs. In
Willem P. de Roever, Hans Langmaack, and Amir Pnueli, editors,
Compositionality: The Significant Difference, International
Symposium (COMPOS), volume 1536 of Lecture Notes in Computer
Science, pages 186–238, Bad Malente, Germany, September 1997.
Springer-Verlag. See p. 34

[24] Olivier Danvy, Robert Glück, and Peter Thiemann, editors. Partial
Evaluation, volume 1110 of Lecture Notes in Computer Science,
Dagstuhl Castle, Germany, February 1996. Springer-Verlag. See p.
142

[25] Alexandre David. Hierarchical Modeling and Analysis of Timed
Systems. PhD thesis, Uppsala Universitet, Department of
Information Technology, Sweden, November 2003. IT Technical
Report series 2003-050. See p. 34

[26] Alexandre David, M. Oliver Möller, and Wang Yi. Formal
verification of UML statecharts with real-time extensions. In
Ralf-Detlef Kutsche and Herbert Weber, editors, Fundamental
Approaches to Software Engineering (FASE), volume 2306 of Lecture
Notes in Computer Science, pages 218–232, Grenoble, France, April
2002. Springer-Verlag. See p. 73, 96

[27] Luca de Alfaro and Thomas A. Henzinger. Interface automata. In
Proceedings of the Ninth Annual Symposium on Foundations of
Software Engineering (FSE), pages 109–120, Vienna, Austria,
September 2001. ACM Press. See p. 133

BIBLIOGRAPHY 207

[28] Karsten Diethers, Ursula Goltz, and Michaela Huhn. Model checking
UML statecharts with time. In Jürjens et al. [64], pages 35–51.
TUM-I0208. See p. 54

[29] Doron Drusinsky and David Harel. Using statecharts for hardware
description and synthesis. IEEE Transactions on Computer-Aided
Design, 8(7):798–807, 1989. See p. 70

[30] Doron Drusinsky and David Harel. On the power of bounded
concurrency I: Finite automata. Journal of ACM, 41(3):517–539,
May 1994. See p. 96

[31] Doron Drusinsky-Yoresh. A state assignment procedure for
single-block implementation of state charts. IEEE Transactions on
Computer-Aided Design, 10(12):1569–1576, 1991. See p. 58, 67, 95,
96

[32] Edwin Erpenbach. Compilation, Worst-Case Execution Times and
Schedulability Analysis of Statecharts Models. PhD thesis,
Department of Mathematics and Computer Science of the University
of Paderborn, April 2000. See p. 95

[33] Rik Eshuis and Roel Wieringa. Requirements level semantics for
UML statecharts. In Scott F. Smith and Carolyn L. Talcott, editors,
Formal Methods for Open Object-Based Distributed Systems
IV—Proc. FMOODS’2000, September, 2000, Stanford, California,
USA. Kluwer Academic Publishers, 2000. See p. 34, 36

[34] Sandro Etalle and Maurizo Gabbrieli. Partial evaluation of
concurrent constraint languages. ACM Computing Surveys, 30(3es),
September 1998. See p. 142

[35] Elena Fersman, Paul Pettersson, and Wang Yi. Timed automata
with asynchronous processes: Schedulability and decidability. In
Joost-Pieter Katoen and Perdita Stevens, editors, Tools and
Algorithms for the Construction and Analysis of Systems, 8th
International Conference, TACAS 2002, Held as Part of the Joint
European Conference on Theory and Practice of Software, ETAPS
2002, Grenoble, France, April 8-12, 2002, Proceedings, volume 2280
of Lecture Notes in Computer Science, pages 67–82. Springer-Verlag,
2002. See p. 54

[36] Ken Friis Larsen. Types for DSP Assembler Programs. PhD thesis,
Technical University of Denmark (DTU) and IT University of
Copenhagen (ITU), 2004. See p. 6

208 BIBLIOGRAPHY

[37] Ken Friis Larsen and Jakob Lichtenberg. MuDDy 2.0—SML
interface to the binary decision diagrams package BuDDy.
http://www.itu.dk/research/muddy. See p. 47, 52

[38] Daniel D. Gajski, Frank Vahid, Sanjiv Narayan, and Jie Gong.
Specification and Design og Embedded Systems. Prentice Hall, 1994.
See p. 2

[39] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns. Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995. See p. 40

[40] Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and
Kiem-Phong Vo. A technique for drawing directed graphs. IEEE
Trans. Software Eng., 19(3):214–230, 1993. See p. 48

[41] Martin Gogolla and Cris Kobryn, editors. 4th International UML
Conference—The Unified Modeling Language, Modeling Languages,
Concepts, and Tools, volume 2185 of Lecture Notes in Computer
Science, Toronto, Canada, October 2001. Springer-Verlag. See p.
210, 215

[42] David Harel. Statecharts: A visual formalism for complex systems.
Science of Computer Programming, 8:231–274, 1987. See p. 3, 20,
31, 33, 34, 96

[43] David Harel. Some thoughts on statecharts, 13 years later. In
O. Grumberg, editor, 9th International Conference on Computer
Aided Verification (CAV), volume 1254 of Lecture Notes in
Computer Science, pages 226–231. Springer-Verlag, 1997. See p. 3

[44] David Harel and Hillel Kugler. The rhapsody semantics of
statecharts (or, on the executable core of the UML). In Hartmut
Ehrig, Werner Damm, Jörg Desel, Martin Große-Rhode, Wolfgang
Reif, Eckehard Schnieder, and Engelbert Westkämper, editors,
Integration of Software Specification Techniques for Applications in
Engineering, Priority Program SoftSpez of the German Research
Foundation (DFG), Final Report, volume 3147 of Lecture Notes in
Computer Science, pages 325–354. Springer-Verlag, 2004. See p. 35

[45] David Harel and Amnon Naamad. The STATEMATE semantics of
statecharts. ACM Transactions on Software Engineering and
Methodology, 5(4):293–333, 1996. See p. 33, 35, 73

[46] David Harel and Amir Pnueli. On the development of reactive
systems. In Krzysztof R. Apt, editor, Logic and Model of Concurrent
Systems, volume 13 of NATO ASI, pages 477–498. Springer-Verlag,
October 1985. See p. 2

BIBLIOGRAPHY 209

[47] David Harel, Amir Pnueli, Jeanette P. Schmidt, and Rivi Sherman.
On the formal semantics of statecharts. In 2nd IEEE Symposium on
Logic in Computer Science, pages 54–64, New York, 1988. IEEE
Computer Society Press. See p. 20, 22, 34

[48] John Hatcliff, Torben Æ. Mogensen, and Peter Thiemann, editors.
Partial Evaluation: Practice and Theory. DIKU 1998 International
Summer School, volume 1706 of Lecture Notes in Computer Science.
Springer-Verlag, Copenhagen, Denmark, 1999. See p. 142

[49] Klaus Havelund and Grigore Roşu. Monitoring Java programs with
Java PathExplorer. In Proceedings of Workshop on Runtime
Verification (RV’01), Electronic Notes in Theoretical Computer
Science. Elsevier Science Publishers, 2001. See p. 6

[50] Johannes Helbig and Peter Kelb. An OBDD-representation of
statecharts. In Robert Werner, editor, Proceeedings of The European
Conference on Design Automation (EDAC), pages 142–149, Paris,
France, Feb/Mar 1994. IEEE Computer Society Press. See p. 46

[51] Thomas A. Henzinger, Christoph M. Kirsch, Marco A.A. Sanvido,
and Wolfgang Pree. From control models to real-time code using
Giotto. IEEE Control Systems Magazine, 23(1):50–64, February
2003. See p. 54

[52] C.A.R. Hoare. Communicating Sequential Processes. International
Series in Computer Science. Prentice Hall, 1985. See p. 115

[53] Gerard J. Holzmann. The SPIN Model Checker : Primer and
Reference Manual. Addison-Wesley, 2003. See p. 45

[54] Haruo Hosoya, Naoki Kobayashi, and Akinori Yonezawa. Partial
evaluation scheme for concurrent languages and its correctness. In
Luc Bougé, Pierre Fraigniaud, Anne Mignotte, and Yves Robert,
editors, Euro-Par’96—Parallel Processing, volume 1123 of Lecture
Notes in Computer Science, pages 625–632, Lyon, France, August
1996. Springer-Verlag. See p. 142

[55] C. Huizing and Willem P. de Roever. Introduction to design choices
in the semantics of Statecharts. Information Processing Letters,
37:205–213, 1991. See p. 17, 34

[56] C. Huizing, R. Gerth, and Willem P. de Roever. Modeling
statecharts behavior in a fully abstract way. In Max Dauchet and
Maurice Nivat, editors, Proceedings of the 13th Colloquium on Trees
in Algebra and Programming (CAAP), volume 299 of Lecture Notes
in Computer Science, pages 271–294, Nancy, France, March 1988.
Springer-Verlag. See p. 34

210 BIBLIOGRAPHY

[57] IAR Inc. IAR visualSTATE � .
http://www.iar.com/Products/VS/. See p. 10, 22, 73

[58] Atsushi Igarashi and Naoki Kobayashi. A generic type system for the
pi-calculus. In POPL 2001. ACM Press, 2001. See p. 133

[59] International standard. Programming Languages—C. Ref. ISO/IEC
9899:1999(E). See p. 19, 39, 48

[60] Peter Jacobsen. Code generation for embedded systems. Master’s
thesis, Technical University of Denmark (Lyngby) and IT University
of Copenhagen, April 1999. See p. 46, 95

[61] David N. Jansen. Probabilistic UML statecharts for specification and
verification: a case study. In Jürjens et al. [64]. TUM-I0208. See p.
34, 36

[62] Ralph E. Johnson and Jonathan Zweig. Delegation in C++. Journal
of Object-Oriented Programming, 4(11):22–35, November 1991. See
p. 40

[63] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial
Evaluation and Automatic Program Generation. International Series
in Computer Science. Prentice Hall, 1993.
http://www.dina.kvl.dk/~sestoft/pebook. See p. 6, 142

[64] Jan Jürjens, Maria Victoria Cengarle, Eduardo B. Fernandez,
Bernhard Rumpe, and Robert Sandner, editors. pUML Group
Workshop on Critical Systems Development with UML (CSDUML),
Dresden, Germany, September 2002. Technical University of Munich.
TUM-I0208. See p. 207, 210, 217

[65] Alexander Knapp and Stephan Merz. Model checking and code
generation for UML state machines and collaborations. In Dominik
Haneberg, Gerhard Schellhorn, and Wolfgang Reif, editors, 5th
Workshop on Tools for System Design and Verification, Technical
Report 2002-11, pages 59–64. Institut für Informatik, Universität
Augsburg, 2002. See p. 95

[66] Donald E. Knuth. The Art of Computer Programming, volume 1.
Addison-Wesley, 3rd. edition, 1997. See p. 124

[67] Sabine Kuske. A formal semantics of UML state machines based on
structured graph transformation. In Gogolla and Kobryn [41], pages
241–256. See p. 34, 36

[68] Marcel Kyas, Harald Fecher, Frank S. de Boer, Joos Jacob, Jozef
Hooman, Mark van der Zwaag, Tamarah Arons, and Hillel Kugler.

BIBLIOGRAPHY 211

Formalizing uml models and ocl constraints in pvs. In Mendler [91],
pages 37–44. To be published in ENTCS. See p. 36

[69] Kim G. Larsen. Context Dependent Bisimulation Between Processes.
PhD thesis, Edinburgh University, 1986. See p. 104, 131, 132, 133

[70] Kim G. Larsen. A context dependent equivalence between processes.
Theoretical Computer Science, 49:184–215, 1987. See p. 104, 132

[71] Kim G. Larsen, Ulrik Larsen, Brian Nielsen, Arne Skou, and Andrzej
Wąsowski. Danfoss EKC trial project deliverables. Technical Report
RS-03-48, BRICS, Aalborg, Denmark, December 2003. See p. 3, 6,
49

[72] Kim G. Larsen, Ulrik Larsen, and Andrzej Wąsowski. Color-blind
specifications for transformations of reactive synchronous programs.
In Maura Cerioli, editor, Proceedings of FASE, Edinburgh, UK, April
2005, Lecture Notes in Computer Science. Springer-Verlag, 2005.
Accepted. See p. 132, 143

[73] Kim G. Larsen and Robin Milner. A compositional protocol
verification using relativized bisimulation. Information and
Computation, 99(1):80–108, 1992. See p. 104, 132

[74] Hung Ledang. Automatic translation from UML specifications to B.
In 16th IEEE International Conference on Automated Software
Engineering (ASE), page 436nn, San Diego, CA, USA, November
2001. IEEE Computer Society Press. See p. 34, 36

[75] Hung Ledang and Jeanine Souquières. Formalizing UML behavioral
diagrams with B. In Tenth OOPSLA Workshop on Behavioral
Semantics: Back to Basics, Tampa Bay, Florida, USA, October 2001.
See p. 34, 36

[76] Hung Ledang and Jeanine Souquières. Contributions for modelling
UML state-charts in B. In Michael J. Butler, Luigia Petre, and Kaisa
Sere, editors, Third International Conference on Integrated Formal
Methods (IFM), volume 2335 of Lecture Notes in Computer Science,
pages 109–127, Turku, Finland, 2002. Springer-Verlag. See p. 34, 36

[77] Nancy G. Leveson, Mats Per Erik Heimdahl, Holly Hildreth, and
Jon Damon Reese. Requirements specification for process-control
systems. IEEE Transactions on Software Engineering,
20(9):684–707, September 1994. See p. 33

[78] Johan Lilius and Iván Porres Paltor. Formalising UML state
machines for model checking. In Robert B. France and Bernhard

212 BIBLIOGRAPHY

Rumpe, editors, The Unified Modeling Language—Beyond the
Standard, Second International Conference (UML), volume 1723 of
Lecture Notes in Computer Science, pages 430–445, Fort Collins, CO,
USA, October 1999. Springer-Verlag. See p. 34, 36

[79] Johan Lilius and Iván Porres Paltor. The semantics of UML state
machines. Technical Report No 273, Turku Centre for Computer
Science, Àbo Akademi University, Finland, May 1999. See p. 34, 36

[80] Jørn Lind Nielsen. BuDDy – a binary decision diagram package
version 2.0. http://www.it-c.dk/research/buddy. See p. 47, 52

[81] Jørn Lind-Nielsen, Henrik R. Andersen, Henrik Hulgaard, Gerd
Behrmann, K̊are J. Kristoffersen, and Kim G. Larsen. Verification of
large state/event systems using compositionality and dependency
analysis. Formal Methods in System Design, 18(1):5–23, January
2001. See p. 142

[82] Jørn Bo Lind Nielsen. Verification of Large/State Event Systems.
PhD thesis, Technical University of Denmark, April 2000. See p. 35,
46, 142

[83] Gerard Lüttgen, Michael von der Beeck, and Rance Cleaveland. A
compositional approach to statecharts semantics. In ACM SIGSOFT
Symposium on Foundations of Software Engineering (FSE), pages
120–129, San Diego, California, USA, November 2000. ACM Press.
See p. 34

[84] Nancy Lynch. I/O automata: A model for discrete event systems. In
Annual Conference on Information Sciences and Systems, pages
29–38, Princeton University, Princeton, N.J., 1988. See p. 133

[85] Andrea Maggiolo-Schettini and Simone Tini. On disjunction of
literals in triggers of statecharts transitions. Information Processing
Letters, 84(6):305–310, October 2002. See p. 34

[86] Florence Maraninchi. The Argos language: Graphical representation
of automata and description of reactive systems. In IEEE Workshop
on Visual Languages, Kobe, Japan, October 1991. See p. 33, 96

[87] Florence Maraninchi. Operational and compositional semantics of
synchronous automaton compositions. In Rance Cleaveland, editor,
Third International Conference on Concurrency Theory (CONCUR),
volume 630 of Lecture Notes in Computer Science, pages 550–564,
Stony Brook, NY, USA, August 1992. Springer-Verlag. See p. 34

BIBLIOGRAPHY 213

[88] Florence Maraninchi and Nicolas Halbwachs. Compiling ARGOS
into boolean equations. In Proc. 4th Int. School and Symposium on
Formal Techniques in Real Time and Fault Tolerant Systems
(FTRTFT), volume 1135 of Lecture Notes in Computer Science,
Uppsala, Sweden, September 1996. Springer-Verlag. See p. 34, 46

[89] Florence Maraninchi and Yann Rémond. Argos: an automaton-based
synchronous language. Computer Languages, 27(1–3):61–92, 2001.
See p. 33

[90] George H. Mealy. A method for synthesizing sequential circuits. Bell
System Technical Journal, 34(5):1045–1079, 1955. See p. 71

[91] Michael Mendler, editor. Workshop on Semantic Foundations of
Engineering Design Languages (SFEDL). Elsevier Science
Publishers, 2004. To be published in ENTCS. See p. 210, 215, 217

[92] Erich Mikk, Yassine Lakhnech, Carsta Petersohn, and Michael
Siegel. On formal semantics of statecharts as supported by
STATEMATE. In 2nd BCS-FACS Northern Formal Methods
Workshop. Springer-Verlag, 1997. See p. 34

[93] Erich Mikk, Yassine Lakhnech, and Michael Siegel. Hierarchical
automata as model for statecharts. In R. K. Shyamasundar and
Kazunori Ueda, editors, Third Asian Computing Science Conference
(ASIAN), volume 1345 of Lecture Notes in Computer Science, pages
181–196, Kathmandu, Nepal, December 1997. Springer-Verlag. See
p. 34

[94] Robin Milner. Communication and Concurrency. Prentice Hall
International Series in Computer Science. Prentice Hall, 1989. See
p. 115, 132

[95] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen.
The Definition of Standard ML (Revised). The MIT Press, 1997.
See p. 47, 56

[96] E. F. Moore. Gedanken-experiments on sequential machines.
Technical report, Automata studies, Princeton University, 1956. See
p. 15

[97] Masaki Murakami. Partial evaluation of reactive communciating
processes using temporal logic formulas. In Workshop on Algebraic
and Object-Oriented Approaches to Software Science, 1995. See p.
142

[98] Object Management Group. OMG Unified Modelling Language
specification, 1999. http://www.omg.org. See p. 6, 31, 47, 124

214 BIBLIOGRAPHY

[99] Object Management Group. Model driven architecture (MDA)—a
technical perspective, 2001.
http://www.omg.org/cgi-bin/doc?ormsc/2001-07-01. See p. 6,
133

[100] Object Management Group. Meta object facility (MOF)
specification, 2002. http://www.omg.org. See p. 47

[101] Object Management Group. OMG XML metadata interchange
(XMI) specification, January 2002. http://www.omg.org. See p. 47

[102] Object Management Group (OMG). UML 2.0 infrastructure
specification, December 2003. Final Adopted Specification (in
finalization phase) http://www.omg.org, document signature
ptc/03-09-15.pdf. See p. 34, 35

[103] Object Management Group (OMG). UML 2.0 superstructure
specification, August 2003. Final Adopted Specification (in
finalization phase) http://www.omg.org, document signature
ptc/03-08-02.pdf. See p. 22, 27, 31, 35, 36, 132

[104] Karsten Andreas Pihl, Mette Berger, and Lone Gram Larsen. Code
generation for the mini-statechart language. 4-weeks project report,
IT University of Copenhagen, May 2003. See p. 48, 54

[105] Gergely Pintér and István Majzik. Automatic implementation of
extended hierarchical automata. Technical report, Budapest
University of Technology and Economics, Budapest, 2003. See p. 45

[106] Gergely Pinter and Istvan Majzik. Impact of statechart
implementation techniques on the effectiveness of fault detection
mechanisms. In Proceedings of the 30th EUROMICRO Conference.
IEEE Computer Society Press, 2004. See p. 43, 45, 54

[107] Kristofer S. J. Pister, J. M. Kahn, and B. E. Boser. Smart dust:
Wireless networks of millimeter-scale sensor nodes. Highlight Article
in 1999 Electronics Research Laboratory Research Summary, 1999.
See p. 2

[108] Amir Pnueli and M. Shalev. What is in a step: On the semantics of
statecharts. In Takayasu Ito and Albert R. Meyer, editors,
International Conference on Theoretical Aspects of Computer
Software (TACS), volume 526 of Lecture Notes in Computer Science,
pages 244–264, Sendai, Japan, September September 24-27, 1991.
Springer-Verlag. See p. 34, 96

BIBLIOGRAPHY 215

[109] Sriram K. Rajamani and Jakob Rehof. Conformance checking for
models of asynchronous message passing software. In Ed Brinksma
and Kim Guldstrand Larsen, editors, 14th International Conference
on Computer Aided Verification (CAV), volume 2404 of Lecture
Notes in Computer Science, pages 166–179, Copenhagen, Denmark,
July 2002. Springer-Verlag. See p. 133

[110] S. Ramesh. Efficient translation of statecharts into hardware circuits.
In 12th International Conference on VLSI Design, pages 384–389.
IEEE Computer Society Press, January 1999. See p. 95

[111] Arnab Ray, Rance Cleaveland, and Arne Skou. An algebraic theory
of boundary crossing transitions. In Mendler [91], pages 63–81. To
be published in ENTCS. See p. 34

[112] Matthias Riebisch, Ilka Philippow, and Marco Götze. UML-based
statistical test case generation. In Mehmet Aksit, Mira Mezini, and
Rainer Unland, editors, Objects, Components, Architectures,
Services, and Applications for a Networked World. NetObjectDays,
Revised Papers, volume 2591 of Lecture Notes in Computer Science,
pages 394–411, Erfurt, Germany, October 2002. Springer-Verlag. See
p. 96

[113] Ella E. Roubtsova, Jan van Katwijk, Ruud C. M. de Rooij, and Hans
Toetenel. Transformation of UML specification to XTG. In Dines
Bjørner, Manfred Broy, and Alexandre V. Zamulin, editors,
Perspectives of System Informatics (PSI), 4th International Andrei
Ershov Memorial Conference, Revised Papers, volume 2244 of
Lecture Notes in Computer Science, pages 249–256, Akademgorodok,
Novosibirsk, July 2001. Springer-Verlag. See p. 73

[114] Miro Samek. Practical Statecharts in C/C++. CMP Books,
Lawrence, Kansas, 2002. See p. 43, 45, 54, 147

[115] Helmut Seidl, Varmo Vene, and Markus Müller-Olm. Towards a
practical analyzer for multi-threaded C. In 14th Nordic Workshop on
Programming Theory (NWPT). Abstracts, pages 90–92, Tallin,
Estonia, nov 2002. Institute of Cybernetics and Tallin Technical
University. See p. 6

[116] Emil Sekerinski and Rafik Zurob. iState: A statechart translator. In
Gogolla and Kobryn [41], pages 376–390. See p. 95

[117] Bran Selic. An efficient object-oriented variation of the statecharts
formalism for distributed real-time systems. In David Agnew, Luc
J. M. Claesen, and Raul Camposano, editors, Proceedings of the 11th
IFIP WG10.2 International Conference on Computer Hardware

216 BIBLIOGRAPHY

Description Languages and their Applications, volume A-32 of IFIP
Transactions, pages 335–344, Ottawa, Ontario, Canada, April 1993.
IFIP. See p. 33, 35

[118] Anthony J. H. Simons. The compositional properties of UML
statechart diagrams. In C. J. van Rijsbergen, editor, Third Electronic
Workshop on Rigorous Object-Oriented Methods. British Computer
Society, 2000. See p. 36, 73

[119] Jørgen Staunstrup, Henrik Reif Andersen, Henrik Hulgaard, Jørn
Lind-Nielsen, Kim Guldstrand Larsen, Gerd Behrmann, Kaare J.
Kristoffersen, Arne Skou, Henrik Leerberg, and Niels Bo Theilgaard.
Practical verification of embedded software. IEEE Computer,
5(33):68–75, 2000. See p. 73

[120] Jørgen Steensgaard-Madsen. Dulce: Danish uniform language
composition engine. http://www.imm.dtu.dk/~jsm/dulce. See p.
54

[121] Jørgen Steensgaard-Madsen. Htel: a hypertext expression language.
Software—Practice and Experience, 29(8):661–675, 1999. See p. 54

[122] Sun Microsystems, Inc. Java card(TM) specification.
http://java.sun.com/products/javacard/specs.html. See p.
124

[123] Alfred Tarski. A lattice-theoretical fixpoint theorem and its
applications. Pacific Journal of Mathematics, 5:285–309, 1955. See
p. 101

[124] Issa Traoré. An outline of PVS semantics for UML statecharts.
Journal of Universal Computer Science, 6(11):1088–1108, 2000. See
p. 34, 36

[125] Jan Tretmans. Testing concurrent systems: A formal approach. In
Jos C. M. Baeten and Sjouke Mauw, editors, CONCUR ’99:
Concurrency Theory, 10th International Conference, Eindhoven, The
Netherlands, August 24–27, 1999, Proceedings, volume 1664 of
Lecture Notes in Computer Science, pages 46–65. Springer-Verlag,
1999. See p. 6

[126] Rob van Glabbeek. The linear time–branching time spectrum
(extended abstract). In J.C.M. Beaten and J.W. Klop, editors,
Theories of Concurrency: Unification and Extension (CONCUR),
volume 458 of Lecture Notes in Computer Science, pages 278–297,
Amsterdam, The Netherlands, August 1990. Springer-Verlag. See p.
37

BIBLIOGRAPHY 217

[127] Rob van Glabbeek. The linear time—branching time spectrum I. In
Jan A. Bergstra, Alban Ponse, and Scott A. Smolka, editors,
Handbook of Process Algebra, pages 3–99. Elsevier Science
Publishers, North-Holland, 2001. See p. 37

[128] Michael von der Beeck. A comparison of statecharts variants. In
Third International Symposium on Formal Techniques in Real Time
and Fault-Tolerant Systems (FTRTFT), volume 863 of Lecture Notes
in Computer Science, pages 128–148, Lübeck, Germany, September
1994. Springer-Verlag. See p. 34, 53

[129] Yunming Wang, Jean-Pierre Talpin, Albert Benveniste, and Paul Le
Guernic. A semantics of UML state-machines using synchronous
pre-order transition systems. In Proceedings of Third IEEE
International Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC), pages 96–103, Newport Beach, CA, USA,
March 2000. IEEE Computer Society Press. See p. 34, 36

[130] Andrzej Wąsowski. On Efficient Program Synthesis from
Statecharts. In ACM SIGPLAN Languages, Compilers, and Tools
for Embedded Systems (LCTES), San Diego, USA, June 2003. ACM
Press. See p. 94, 96

[131] Andrzej Wąsowski. Automatic generation of program families by
model restrictions. In Software Product Line Conference (SPLC),
Lecture Notes in Computer Science, Boston, USA,
August/September 2004. Springer-Verlag. See p. 132, 143

[132] Andrzej Wąsowski. Flattening Statecharts without Explosions. In
ACM SIGPLAN Languages, Compilers, and Tools for Embedded
Systems (LCTES), pages 257–266, Washington DC, USA, June 2004.
ACM Press. See p. 94

[133] Andrzej Wąsowski. On Succinctness of Hierarchical State Diagrams
in Absence of Message Passing. In Mendler [91]. To be published in
ENTCS. See p. 94

[134] Andrzej Wąsowski. Succinctness of hierarchical state diagrams in
absence of message passing. Technical Report 42, IT University of
Copenhagen, Denmark, February 2004. See p. 94

[135] Andrzej Wąsowski and Peter Sestoft. Compile-time scope resolution
for statecharts transitions. In Jürjens et al. [64], pages 133–145.
TUM-I0208. See p. 54

[136] Andrzej Wąsowski and Peter Sestoft. On the formal semantics of
visualSTATE statecharts. Technical Report TR-2002-19, IT
University of Copenhagen, September 2002. See p. 34

218 BIBLIOGRAPHY

[137] Andrzej Wąsowski. SCOPE: A statechart compiler, 2002-2004.
http://www.mini.pw.edu.pl/~wasowski/scope. See p. 22, 45, 56

[138] Albert Zündorf. Rigorous object oriented software development with
Fujaba v. 0.3. Unpublished Draft, 2002. See p. 43, 45, 54, 95

Index

σ, viii, ix, 3, 4, 8, 10, 11, 12, 13, 14,
15–17, 18, 19, 20, 21–23,
24, 25, 26–30, 31, 32–36,
40, 51, 53, 64, 65, 71, 72,
74, 75, 78, 80–85, 92–95,
100, 101–103, 105–108,
110, 111, 115, 118, 122,
128, 136–140

τ -actions, 131
and-depth, 75, 76
−→, 102

priority, 23, 24, 26, 31, 32, 34, 35, 92
68HC05, 1
VarE , 10, 11, 14, 72, 80, 92
VarI , 10, 11, 14, 19, 20, 72, 80, 92

Action, viii, 10, 11, 14, 82, 122–124,
126–128, 136, 137

action, 14, 30, 59
entry, 15, 20
entry/exit, 62, 82
exit, 15, 20, 23
instance, 18, 19

action mapping, 11
action mappings, 15
actions
entry/exit, 61, 63
executor, 59

Active-And, 60
Active-And-Flat, 72
activity, 70, 83
activity test, 64, 69
Aexp, viii, 14–16, 20–22
Ainst, 18–22, 24, 26, 30, 32, 33
(α, β)-model, 75–79, 92
Ali, Jauhar, 42
Alur, Rajeev, 96
Amnell, Tobias, 54
anatomy, 72, 80, 81
ancest∗, viii, 12, 51, 81

Ancestor, 64
ancest, viii, 12, 51, 81, 93
ancestorship, 64, 65
ancest+, 93
and-state, viii, x, xi, 10, 11, 12, 15,

16, 23, 24, 26, 29, 30, 33,
42, 50, 51, 59, 63–66, 69,
71, 72, 75, 76, 80, 82, 84, 92

Argos, 33
arithmetic expression, 14
ARM, 39
−−→
asgn
, 19–21

assembly languages, 6, 39, 145
Assgn, 14–16, 19–21
assignment, 14, 19
closed, 14

asynchronous communication, 35, 36
asynchronous systems, 130
ATmega, 39, 145
Atmel, 39, 145
automata, 45, 54
AVR, 39, 69, 91, 145

back-end, 47–49, 56–98
hierarchical, 62–70

basic states, 70
BDD, 46, 47, 51, 52, 88, 95, 123, 142
BDD-based method, 45–47
Beeck, Michael, 53
Behrmann, Gerd, 95
Berger, Mette, 54
Berry, Gerard, 17, 124
bisimulation, 101
relativized, 73, 93, 102–104, 118,
129, 135, 141

relativized and color-blind,
107–110

Björklund, Dag, 95
Bogdanov, Kirill, 54
Booch, Grady, 40

220 INDEX

branch exclusion, 50–52
theorem, 50, 51

Bryant, Randal, 46
BuDDy, 47, 52

C++, 40, 42
C, programing language, 13, 14, 19,

39, 44, 45, 48, 54, 62
−−−→
C-sem

, 19, 20, 27

call stack, 39, 56, 73, 92
CCS, 115, 132
Charter, 54, 145
children, viii, 12, 24, 26, 30, 66, 67,

83, 84
class
equivalence, 106

classifier DFA, 125–127
code generation, 13, 38–98, 114, 118
flattening, 48, 58, 59, 90
hierarchical, 48, 58, 62, 90, 95
requirements, 38, 39

color-blindness, 99, 105–133
composition, 111
system with environment, 102

compositionality, 35, 104
compound events, 34
concurrency, 42, 43, 45, 79, 92, 96
threads, 42

configuration, 18, 19, 24–31, 33, 50,
51, 67

Configuration-Bound, 96
conflict, 31, 53
unresolvable, 31

conflict elimination, 52, 53
conflict resolution, 42, 52
conflicts, 34
conjunction, 115
cons∗, 21, 22, 24, 26, 30, 32, 33
cons, 21–24, 26, 30, 32, 33
constructor
⊥, 21

correspondence relation, 92, 93
CSP, 115

Danfoss, 49, 97
David, Alexandre, 96
dead code elimination, 99
deadline, 54
deadlock, 120, 122
strong, 120

weak, 120
deadlock freeness, 118, 120
deadlock state, 120
decomposition tree, 48
default, 25, 26
depth, 69
depth-first-search, 65
Dequeue, 58, 59
descend, 12, 24, 26, 28, 30, 93
descend+, 26, 93
descend∗, 12, 24, 26, 28, 30
determinisation, 116
determinism, 84, 106, 115
strong, 135

deterministic finite automaton, 125
Diethers, Karsten, 54
Dijkstra, Edsgar, 58
direct access table, 58, 59
discrimination, ix, 110–113, 116, 118,

129–131
disjunction, 115
in guards, 16

dispatch tables, 43
distributed systems, 130
DNF, 85
D, 13, 17–19
dom, vii, 18, 24, 25, 72, 83, 93, 125
domain model, 136
do reactions, 34
double-buffering, 61, 62, 95
driver, 40, 44, 48
dummy, 49

Drusinsky, Doron, 58, 95, 96
Dulce, 54
dynamic memory management, 39,

43

Ebind, 15, 16
EEPROM, 3
EHA2C, 45
Einst, 18, 31, 32
elems, vii, 128
elimination of dynamic scopes,

48–52, 54
enabled, 31, 32, 53, 93
endofunction, 101–103, 107, 111, 112
Enqueue, 59
−−−→
enter
, 25, 26, 59

Enter-And-Flat, 72

INDEX 221

enter relation, 25, 30
en, viii, 10, 11, 15, 23, 26–28, 72, 80,

82, 84, 86–88, 92, 93
Entry-And, 83
entry-exit schedule, 83, 83, 84
Entry-Or, 83
entry path, 25
entry schedule, 84
environment, 99–133
blind, ix, 106, 109, 111, 117,
131, 137, 139, 141

least discriminating, 111
most discriminating, 111
perfect vision, ix, 107, 110, 111,
114, 117, 128

environments, 99
Equiv, 117
equiv, 137
equivalence, 106, 118, 123, 124, 126
Erpenbach, Edwin, 95
Eval, 59
evaluation, 19
evaluation relation, 27
evaluator
guards, 59

Event, viii, 10, 11, 14, 33, 82, 86,
122, 124, 126, 128

event, 14, 16, 31, 58
event binding, 15
instance, 18, 31
internal, 10
parameters, 16, 34

event handler, 43
Exec, 59
−−→
exec
, 20, 21

exec relation, 30
execution, 19, 118–120
execution relation, 20, 21
executor
actions, 59

Exit, 84
ex, viii, 10, 11, 15, 23, 24, 27, 28, 59,

71, 72, 80, 82, 86–88, 92, 93
exit-pure, 67
exit actions, 67
exit relation, 23, 30
Exp, viii, 14, 16, 19, 27, 93
expr, 16, 31
expression, 27

closed, 14, 16
pure, 16, 19

expressions, 13, 27
pure, 31

false, 123
fault tolerance, 45
finite state machine, 71
Fire, 59, 60, 73
−−→
fire
, 30

fire relation, 30
fixpoint theorem, 101–103, 108
Flag-Based Encoding, 67
flag-based encoding, 69, 95
flattening, 56, 70, 73, 74, 77, 79, 80,

86, 87, 91, 92, 95–97
lower bound, 73–79
polynomial, 79–94

front-end, 47, 48
Fujaba, 45
function
monotonic, 103
pure, 19, 20
typing, 11

functions, 13

Gamma, Erich, 40
ΓE , viii, 10, 11, 14, 15, 18, 72, 80, 92
ΓF , viii, 10, 11, 14, 15, 18, 19, 72,

80, 92
ΓV , 10, 11, 14, 15, 17, 72, 80, 92
GCC, 42, 70, 91
Gen, viii, 100–103, 105–108,

110–112, 118–122, 126, 129,
130

generated events, 34
generation
relation, 106

generator, 100, 102, 104, 106
Giotto, 55
Glabbeek van, Rob, 37
global state, 19
global transition relation, 32
Gram, Lone, 54
graphviz, 48, 49
greatest fixpoint, 102, 103, 108, 112
greatest lower bound, 117, 123
Guard, 16, 27, 93
guard, 16, 27, 31, 50, 51, 53, 59, 71,

81

222 INDEX

analysis, 87
guards, 16, 34, 85
evaluator, 59

H8/300, 39, 91, 145
hardware, 67, 73, 95
hardware stack, 39
Harel, David, 3, 20, 22, 27, 31,

33–36, 96
Henzinger, Thomas, 54
hiding, 105
hierarchical statecharts, 79, 124
hierarchy, 11, 43, 56, 79
hierarchy tree, 63–65, 68, 71, 72
History, 24, 26, 30, 32, 33, 122
his, viii, 10–12, 18, 19, 25, 26, 29, 33,

42, 61, 62, 71, 72, 80,
82–84, 92, 93

transition, in flattening, 84
history transitions, 34
Hitachi, 39, 145
Holcombe, Mike, 54
hsm format, 48
Huizing, C., 34

I-Logix, 43
IAR Systems, 69, 97, 145
IBM, 43
ignore, 137
implicit scope, 29
In, viii, 100–111, 113, 114, 116–119,

121, 122, 124, 131
individual scope semantics, 49
ini, 72
−−→
init
, 33

ini, viii, 10–13, 18, 19, 25, 33, 72, 80,
83, 84, 92, 93

marking, 10
state, 106

initialization, 17, 33
initial marker, 61
initial markers, 61
initial marking, 80
initial transitions, 34
input-enabledness, 32, 100, 102, 106,

115
inputs, 100
Intel, 39
Inter, 128
Interleave, 117, 138

interleaving, 22, 23, 128
interpretative method, 45
IOATS, x, xi, 100, 101–104,

106–111, 114–116, 118, 119,
121, 123–127, 130, 131

IOATS, x, xi, 100–104, 106–111,
114–116, 118, 119, 121,
123–127, 130, 131

iscope, viii, 28, 29, 49
ISO, 19

Jacobsen, Peter, 46, 95
Java, 54
Java Card, 124
Johnson, Ralph, 40
junction transitions, 34

Knaster, Bronisław, 101

labeled transition systems, 104
labeling scheme, 64, 65
Larsen, Kim, 104, 131, 132
lattice, 101–103, 108, 112, 115, 117,

123
LCA, 36
LCC, 69
least upper bound, 117, 123
Leveson, Nancy G., 33
lexer generators, 45
Lilius, Johan, 95
linker, 97
Linux, 52, 69, 91
, 14–16, 18, 20, 21, 23, 83, 84
lvalue, 61

M-set, 128
m-set, 128
−−−→
macro

, 32

Macrostep, 58, 73
macrostep, 17, 32, 36, 38, 49, 57, 58,

93
macrostep relation, 32
main function, 44
Majzik, Istvan, 43, 45
Maraninchi, Florence, 33
MARC4, 3
marking
history, 18, 25
initial, 13, 25

maximal orthogonal set, 24, 25

INDEX 223

Mealy machine, 71
memoization, 95
memory protection, 45
−−−→
micro
, 32

Microstep, 58–60, 73
microstep, 17, 31–33, 58, 61
microstep relation, 31
Milner, Robin, 132
ministep, 94
model checking, 6, 13, 35, 45, 47, 53,

54, 61, 96
Model Driven Architecture, 6
model representation
flat, 71

model visualization, 47, 48
MOF, 47
Moore machine, 15
Motorola, 1
MuDDy, 47, 52
M, vii, 23, 128
multiple signals, 61
multiple targets, 61
multiset, 122

NCA, viii, 12, 26, 28, 36
negative conditions, 59
next-conf, 59
nondeterminism, 22, 26, 31, 34, 35,

92, 93, 131

Obs, viii, 100–103, 105–111, 118–122,
129, 130

observation
class, 105, 113, 122, 124
relation, 105, 126
transition, 105, 113, 130

observation transition, 109
observer, 100, 101, 103, 104, 106
?
−→, 100

OMG, 47
operators
binary, 14
unary, 14

or-state, viii, xi, xii, 10, 11, 12, 18,
23, 25, 27, 29, 42, 50, 61,
63–69, 71, 72, 75, 80, 84, 92

orthogonal set, 12, 26, 29
maximal, 18

orthogonal states, 24, 29

Out, viii, ix, 100–111, 113, 115,
117–124, 131

out-degree, 75
−−−−→
output

, 20

empty, viii, 21–24, 26, 32, 33,
120, 121

structure, 122
output relation, 20
outputs, 100
sequence-based, 20
set-based, 20

output structure, 22, 34, 99

parameters, of the semantics, 21
params, 16, 32
parent, viii, 12, 28, 50, 51, 64, 72, 80
parent state, 12
parent2, 82
parser, 48
parser generators, 45
partitioning, 106, 113, 115, 123, 124
Pentium, 69, 91
PIC, 1, 69
Pihl, Karsten, 54
Pinter, Gergely, 43, 45
Pnueli, Amir, 34
pointers, 59
Porres, Iván, 95
positive conditions, 59
P , vii, 16, 21, 23, 26, 103, 105, 107,

108, 111, 122–124, 128, 136,
137

prev-conf, 59
product, 116, 123
of classifier DFAs, 126
of environments, 115, 117

product line management, 132
propositional logics, 46
pure expression, 14, 39

q, 18–22, 24–26, 29, 30, 32, 33
quantum framework, 43–45
Queue, 18, 20, 21, 24, 26, 30, 32, 122
queue, 18, 19, 29, 34, 36

RAM, 3
Ramesh, S., 95
Rational Rose, 43
reachability, 142
compositional backwards, 142

224 INDEX

forward, 142
reachable state space, 51, 53, 75, 77,

87, 142
reactive systems, 17, 46, 99, 100
real-time, 33
record markers, 65
recurrence, 76
refinement, 35, 118
relabeling, 105
Rhapsody, iii, 35, 43
ringbuffer, 59
RISC, 3
RMSL, 33
rng, vii, 13, 93
Roever de, Willem P., 34
ROOMcharts, 33, 35
root, viii, 11, 12, 18, 25, 27, 28, 30,

32, 33, 63, 71, 72, 74–76,
80, 81, 83, 85, 93

run-to-completion, 36, 46
η, 18, 19, 24–26, 29, 30, 32, 33, 74
runtime, 69, 70
flat, 70–73
hierarchical, 62–70

runtime representation, 61
runtime system, 57–62
rvalue, 61

safety, 61
Samek, Miro, 43, 45, 147
SAT-solver, 51, 52, 123
satisfaction relation, 27, 31
satisfiability, 51, 52
sbstatesym, 50
scheduling transitions, 31
SCOPE, 7–9, 15, 38, 45, 47–49,

52–55, 57, 58, 61–63, 67–70,
88, 92, 95–97, 144, 145,
184, 203

scope, 23, 25, 27, 29, 31, 35, 49–53,
58, 59, 68, 69, 72, 83, 85

collective, 27, 28, 34
dynamic, 49–51, 69
generalized, 29, 50
implicit, 28, 29
individual, 27–29, 34
static, 50, 72

scope, viii, 29–31, 53
Selic, Bran, 33, 35
semantics, 10

Set, 128
set, 128
Shalev M., 34
Σmax, 18, 24
Σroot, 18, 27, 30, 32, 33
Signal, viii, 10, 14–16, 18, 20, 21, 33,

72, 80, 82, 83, 86, 92, 94
signal, 14, 61, 79, 85, 87
parameterized, 15

signal queue, 15, 59, 61, 87
signals, 27, 64
signature, 104, 106, 115
SimpleType, 10, 11, 13, 14
simulation, 101, 102, 104, 105
between environments, 141
for environments, 111, 112, 116
realtivized, 104
relativized, 102, 103, 105, 118,
129, 135

relativized, two way, ix, 118,
129, 130

relativized and color-blind,
107–109

two way, ix, 121
size explosion, 70
software product lines, 133–143
source, 16
source state, 61
SPIN, model checker, 45
Standard ML, 47, 54, 56, 145
State, viii, 10–13, 15, 16, 18, 23, 24,

26, 51, 64, 65, 72, 75,
80–85, 92, 93

state, 11
ancestors, 12
children, 12
configuration, 67
descendants, 12
exit-pure, 67
history, 10, 12, 18
non-history, 13
pattern, 40–44
removing, 88
type alternation, 63

state-based encoding, 69
statecharts, 10, 128, 130
flat, 46, 71–74, 72, 91, 94, 97
hierarchical, 74

state exploration, 112

INDEX 225

state hierarchy, 31
statemate, iii, 33, 35
StateOR, 10
static conflict resolution, 54
Steensgaard-Madsen, Jørgen, 54
Store, 17, 19–21, 24, 26, 27, 30, 32,

33, 122
%, vii, 17, 19–22, 24–27, 29–33, 53,

74, 93
substate relation, 11, 35, 40, 62
sum, 123, 126
of environments, 115, 117

switch statements, nested, 43, 44
synchronization, 64, 102
synchronous communication, 35
synchronous composition, 115, 116
synchronous systems, 17, 99, 100
synchrony hypothesis, 17, 31, 35, 39,

54
system
closed, 102, 105
looping, ix, 113

systems
asynchronous, 130
compatible, 102, 106, 109
distributed, 130, 131

Tanaka, Jiro, 42
target, 27, 59, 61
flat, 68
mode, 68

targets, 16, 29, 30, 51
normalized, 29

Tarski, Alfred, 102, 103, 108, 112
testing, 48, 49, 54
black-box, 49

thermostat controller, 4
timed automata, 54
with tasks, 54

topological sort, 128
τ , viii, 13, 19
Trans, 10, 11, 16, 30, 31, 53, 72, 80,

82, 85, 92, 93
transformations, 48–53, 135
transition, 31, 58
action, in flattening, 82
firing, 59
syntactic, in statechart, 16, 17
targets, 50

transition relation, 58

transitions
merge, 88

transition schedule, 84, 85
traversal
inorder, 65
postorder, 65

trigger, 16
Trivial-Active-And, 64
true, 16, 27, 81, 82, 86, 123, 124
Type, 10, 11, 13, 14, 17
type, 13
arithmetic, 13
data type, 13
range, 13

type, of state, 11
type checking, 13
type oracle, 13
type system, 13, 43
typing
action, 14
event, 11, 14
function, 11
variable, 11, 14

UML, 6, 22, 27, 28, 31, 33–36, 42, 46,
47, 64, 81, 96, 124, 132, 145

2.0, 47
union-find, 124, 126, 127
unit, 13
unreachable
transition, 51

Value, 17, 19
value, 17
Var, 10, 11, 14–17, 19, 20, 72, 80, 92
variable, 61
access, 62, 95
external, 10, 19
internal, 10, 19
updates, 61

variables, 13, 14
vectors, 13
virtual, 42
visualSTATE, iii, vii, x, 10, 13–17, 27,

28, 31, 34, 36, 45–49, 53,
57, 61, 62, 64, 68–70, 81,
85, 88, 91, 96, 97, 144, 177

worst case reaction time, 95
writable memory, 59, 73, 95

226 INDEX

x86, 39, 42, 69, 88
XMI, 47
XML, 47

Zündorf, Albert, 43
Zweig, Jonathan, 40

