
Succinctness of Hierarchical State Diagrams

in Absence of Message Passing

Andrzej Wąsowski

IT University Technical Report Series

TR-2004-42

ISSN 1600–6100 February 2004

Copyright
�
2004, Andrzej Wąsowski

IT University of Copenhagen

All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use

on condition that this copyright notice is

included in any copy.

ISSN 1600–6100

ISBN 87-7949-063-8

Copies may be obtained by contacting:

IT University of Copenhagen

Glentevej 67

DK-2400 Copenhagen NV

Denmark

Telephone: +45 38 16 88 88

Telefax: +45 38 16 88 99

Web www.it-c.dk

On Succinctness of Hierarchical State Diagrams

in Absence of Message Passing

Andrzej Wąsowski (wasowski@itu.dk)

Abstract

We show a subexponential but superpolynomial lower bound for flattening problem for statecharts. The

result presented is resistant to many variations in statecharts semantics. The immediate consequence is

that usage of common flattening algorithms in the implementations of tools should be carefully examined,

taking into account presence of signal communication in the target language. This specifically affects

flattening-based strategies for automatic model-based program synthesis.

1 Introduction

The formalism of hierarchical state diagrams under-
lies multiple modeling languages and tools, mostly
variants of Harel’s statecharts [8]. Flattening, or
elimination of hierarchy, is an operation typically ap-
plied to hierarchical models both in theoretical and
practical settings. It is used to give the semantics of
hierarchical languages [9] and to provide algorithms
for code generation [15], automatic testing [3] and
model checking [6]. Flat models can be easily in-
terpreted with very limited writable memory usage.
They are also easier to analyze for worst-case execu-
tion time approximations, as they can be interpreted
using a single loop. Finally they can be more easily
translated to hardware circuits. This makes flatten-
ing specifically attractive for code generation target-
ing constraint embedded systems. Due to this mul-
titude of applications, complexity of the flattening
problem appears an important property of the lan-
guage.

The impact of introducing hierarchy in state-
charts has been studied previously [1, 2], however
only questions relevant to model-checking commu-
nity have been addressed. Present paper belongs to
the line of new developments discussing succinctness
of hierarchical models from program synthesis per-
spective. We show a superpolynomial lower bound
for flattening translations to languages without signal
communication. In a parallel paper [15] a polynomial
algorithm is shown for the same problem under the
relaxed condition that message passing communica-
tion is allowed in the target language.

The paper proceeds as follows. Section 2 intro-

duces hierarchical and flat statecharts, defines the
flattening problem and formulates the main claim of
the paper. Section 3 elaborates on development of
the proof, while section 4 attempts to discuss appli-
cability of the result to typical variants of statecharts.
Section 5, mainly devoted to related work, also aims
to indicate a range of open problems in discussion of
succinctness of statecharts. We conclude in section 6.

2 Problem definition

2.1 Source Language

Consider a subset of the statechart language [8].
Let State be a finite set divided into two dis-
joint classes Stateand and Stateor. Members of the
classes are called and-states and or-states correspond-
ingly. States are ordered by a hierarchy relation
↘⊆ State × State such that:

[and root] root ∈ Stateand

[and leaves] ∀s ∈ Stateor. ∃s′ ∈ Stateand. s ↘ s′

[alternation] ∀s, s′ ∈ State. s′ ↘ s ⇒

s ∈ Stateand ∧ s′ ∈ Stateor∨

∨ s ∈ Stateor ∧ s′ ∈ Stateand

[rooted] ∀s ∈ State.root ↘∗ s

[acyclic] ∀s, s′ ∈ State. ¬(s′ ↘+ s ∧ s ↘+ s′)

[no sharing] ∀s, s′, s′′ ∈ State. s′ ↘ s ∧ s′′ ↘ s

⇒ s′ = s′′

If s′ ↘ s then we say that s is a child of s′,
s′ = parent(s), and s ∈ children(s′). The relation im-
poses a directed tree structure on states: the root

3

enabled(s
[e:g]/o
−−−−→t, σ1, e) 〈s, σ1〉−−→exit 〈σ2, o1〉 〈t, σ2〉−−−→enter 〈σ3〉

〈s
[e:g]/o
−−−−→t, σ1, e〉−−→fire 〈σ3, o1ˆo〉

,

s ∈ Stateand ∧ {s1, . . . , sn} = children(s) γ(si) < γ(si+1) 〈si, σi〉−−→exit 〈σi+1, oi〉

〈s, σ1〉−−→exit 〈σn+1 \ {s}, o1ˆ . . . ˆonˆex(s)〉

s ∈ State or s′∈ children(s) ∩ σ1 〈s′, σ1〉−−→exit 〈σ2, o〉

〈s, σ1〉−−→exit 〈σ2 \ {s}, o〉

s ∈ State and s1, . . . , sn = children(s) 〈ini(si), σi〉−−−→enter 〈σi+1〉

〈s, σ1〉−−−→enter 〈σn+1 ∪ {s, s1, . . . , sn}〉

e ∈ Event {t1, . . . , tn} = Trans π(ti) < π(ti+1) 〈ti, σi, e〉−−→fire 〈σi+1, oi〉

〈σ1, e〉−−−→macro 〈σn+1, o1ˆ . . . ˆon〉

Figure 1: Operational semantics rules for statecharts

node and all leaves are and-states, while all children
of and-states are or-states and vice versa. Let Event
and Output denote finite sets of events and outputs
and Guard be the set of possible synchronization con-
ditions over activity of states generated by the gram-
mar g ::= s | g ∧ g | ¬g. A transition is a tuple:
(s, e, g, os, t) ∈ Trans ⊆ Stateand × Event ×Guard ×
Output∗ × Stateand, where s is a source state, t is a
target state, e is a triggering event and os is the se-
quence of outputs. We will write s

[e:g]/os
−−−−→t instead

of (s, e, g, os, t) ∈ Trans . Only flat transitions are al-
lowed, thus parent(s) = parent(t) or s = t = root. We
assume that for all transitions the source state is also
contained in the guard condition, so g =⇒ s.
Each or-state s has a distinguished child called an

initial state, denoted ini(s), which is entered when-
ever s is entered, if further targets are not specified.
Each and-state s has an assigned sequence ex(s) of
exit outputs, which are generated whenever s is ex-
ited.

ini : Stateor → Stateand ex : Stateand → Output
∗

A statechart is a tuple:

S = (Stateand,Stateor,↘, ini, ex,Event ,Trans).

The root state is permanently active during exe-
cution. If any and-state is active, then all its children
are active. If any or-state is active, then exactly one
child is active. The set of active states σ ∈ State is
called an active configuration. A transition is enabled
if its triggering event occurs and σ satisfies the guard:

enabled(s
[e:g]/o
−−−→t, σ, e′) iff e = e′ and σ � g

Transition fires by exiting its scope, producing out-
puts and entering the target. See figure 1 for a for-
malization of the dynamic semantics.
Exit actions are generated in a bottom up man-

ner and entry is performed in a top down manner.
The order of traversing hierarchy is fixed, so the be-
havior is deterministic, but the precise choice is tool
implementation dependent. We parameterize the se-
mantics with an injection γ : State → N to model
this choice.
A statechart executes in steps, interpreting a se-

quence of incoming events. Each such step consists
of an iteration of firing enabled transitions. Again
the order of the iteration is fixed but implementation
dependent, which is reflected in the semantics by the
priority injection function π : Trans → N.
The initial configuration σ0 is computed by

〈root , ∅〉−−→
enter

〈σ0〉.

A statechart is conflictless if for any two transi-
tions enabled in the same step their source states are
not related by ↘∗ , the transitive closure of ↘. In
other words every two transitions, which may be en-
abled at the same time have non overlapping scopes.
We shall only consider conflictless statecharts (until
section 4).
The dynamic semantics of given implementation

is described by execution traces composed of input
events and sequences of outputs:

[[S]]γπ = traces(S, γ, π) ⊆ (Event ×Output∗)∗.

Traces are generated by feeding the macro relation
with all possible sequences of input events. In each

4

B

D F G

C
A

E

[e{F}{}]/a : G

[f{}{E}]/

[f{}{}]/

Figure 2: An example of flat statechart.

element of the trace, an environment event is accom-
panied by a sequence of outputs, called a reaction.
Models are input enabled, so there is a trace for any
sequence of environment events, but some reactions
may be empty. There is only one reaction for a given
event in a given state. This follows from conflictless-
ness requirement.

The out-degree of a state is the number of its chil-
dren (i.e. the out-degree of the node in the hierar-
chy tree). The depth of the model, denoted d, is the
number of states in the longest path in the hierarchy
tree leading from root to a leaf. All models always
have odd depth (as the root is an and-state and so
are all leaves). A variant of depth—called and-depth,

denoted d̂, only reflects number of and-states in the
paths: d̂ =

⌈

d
2

⌉

We will denote number of all states
in the model by n = |State|. Finally the size of the
model is defined as the size of all its guards, actions
output sequences and the number of states.

2.2 Target Language

AMealy machine is a finite state machine with transi-
tions between states and sequences of atomic actions
executed when a transition is fired. Each transition is
labeled by a triggering event and a guard condition.

A flat statechart (see figure 2) is defined as a set
of Mealy machines, operating concurrently in syn-
chronous steps. The machines communicate by syn-
chronization on active states. In other words this is
a statechart with one level of or-states and without
exit actions. The ex function is a constant, always
returning an empty sequence of outputs and the ↘
relation forms a shallow tree: all and-states are basic
states (except for the root). Depth of flat statecharts

is d = 3 and d̂ = 2 in this model. The semantics
of flat machines is defined in the same manner as se-
mantics of hierarchical machines. Flat statecharts are
also required to be conflictless and input-enabled.

Neither the source nor the target language incor-
porate a message passing mechanism, also called sig-
nal communication. Many statechart variants, in-

cluding UML and Harel’s statecharts, provide a fa-
cility for generating local events as outputs in states
and on transitions. Generated events are normally
not available in the same step, but stored for inter-
pretation in a set, multiset or a queue. A single re-
action step, or a macrostep, consists of multiple mi-
crosteps processing locally generated events as long as
no more local events are available. My main claim is
that this extension is non-trivial, thus in the absence
of message passing communication hierarchy leads to
superpolynomial succinctness gains. For this reason
message passing has been excluded from the language
definition.

2.3 Flattening

Implementation relation.

Statechart S ′ implements a statechart S iff every im-
plementation of S ′ realizes legal executions of some
implementation of S:

S ′ . S ⇐⇒ ∀γ1π1.∃γ2π2. [[S ′]]γ1π1 ⊆ [[S]]γ2π2

Note that trace inclusion is a sufficient implemen-
tation criterion for input-enabled and deterministic
systems.

Flattening.

Let F be an algorithm transforming statecharts. F is
a flattening algorithm if for any statechart S it yields
a flat statechart S ′ such that S ′ . S.
Literature mentions a multitude of meanings for

flattening and related concepts. Let me stress that
the meaning given above is different from generation
of single product machine for all concurrent compo-
nents. Our understanding of hierarchy, concurrency
and flattening is rather similar to that of [1, 2, 13, 6]
and substantially different than that of [5, 10, 12].

Theorem 1. There exists a hierarchical statechart S
such that for any flat statechart S ′ implementing it,
S ′ . S:

5

1. The size of S ′ is in Ω(2
√

s), where s represents
the size of S.

2. Previous claim holds even if S is restricted to
binary inputs and outputs.

3. The lower bound with growth rate arbitrarily
close to the exponential, can be constructed by
choosing S with sufficient amount of concur-
rency.

Note that the second claim of the above theorem
is stronger than the initial one. It says that the lower
bound holds even for a subset of hierarchical state-
charts over binary alphabet (decreasing the set from
which S can be chosen). So the first claim is a spe-
cial case of the second claim. The third claim is even
stronger saying that the lower bound can be increased
arbitrary close to the exponential function. We will
show how to construct S so that the degree of the
root in the exponent approaches one, as the amount
of concurrency in S increases.

3 Proof

The proof proceeds by identifying an infinite fam-
ily of (α, β)-models such that each of the members
in the family has a superpolynomial reachable state
space and each state configuration yields a different
sequence of exit outputs. Then the observation is
made that such sequences cannot be represented in
any flat model without equivalent multiplication of
transitions. Finally I show that the family of (α, β)-
models contains statecharts for which hardness of
flattening problem is arbitrary close to an exponential
of model size.

3.1 Family of (α, β)-models

Consider a family of statecharts with fixed out-degree
α for nonbasic and-states and fixed out-degree β for
or-states (α ≥ 2, β ≥ 2). Each and-state has a unique
exit action assigned. For each and-state in the model
there is a transition sourced in that state. Each tran-
sition has a unique event triggering it. The targets of
transitions are selected in such a way that there is a
cycle over and-states in any particular state machine
at any level. Note that this way every statically legal
configuration in the statechart is reachable.
We will indicate a specific model in the family by

giving its parameters and size, calling it an (α, β)-

model of and-depth d̂ or an (α, β)-model of n states.

In the latter case n has to be consistent with α and
β. Figure 3 presents a (2,3)-model of and-depth 3.
Note that the size of any model depends on size

of actions and guards, the number of transitions and
number of states. Size of actions and guards is con-
stant for (α, β)-models and the number of transitions
is the same as number of states. Thus, from now on,
we will use the number of state n as a measure over
(α, β)-models instead of general size s.

3.2 Reachable State Space

We shall now be concerned with the size of the reach-
able state space of an (α, β)-model. Let width

k̂
de-

note the number of states on and-depth k̂ (i.e. on k̂th
level of and-states) in an (α, β)-model:

width
(α,β)

k̂
= (αβ)k̂−1

In particular width
d̂
denotes the number of basic

states in a given family member. The number of ac-
tive states of an (α, β)-model at and-depth k̂ is given
by:

active
(α,β)

k̂
= αk̂−1

The total number of states as a function of and-depth
can be described with the following recurrence:

n
(α,β)
1 = 1

n
(α,β)

d̂
= n

(α,β)

d̂−1
+ width

(α,β)

d̂−1
· (α + αβ). (1)

The recurrence, solved and inverted, gives the and-
depth of the model as a function of the number of
states n:

d̂(α,β) = logαβ

[

β

β + 1
(n − 1)(αβ − 1) + αβ

]

(2)

for legal combinations of values of α, β and n. For-
mula (2) gives a translation from functions over and-
depth to functions over model size.
Recall that all statically legal configurations are

reachable in (α, β)-models, so the number of reach-

able states in a model of depth k̂ given by R
(α,β)

k̂
, is

equal to the number of possibilities in which active
sets of states can be selected according to semantics
of statecharts.

R
(α,β)
1 = 1

R
(α,β)

k̂
=

R
(α,β)

k̂−1
∑

i=1

(βα)active(k̂−1)

6

Figure 3: (2,3)-model of and-depth 3, also a (2,3)-model of 57 states.

β β

α

β β

α

β β

α

β

β β

α

β β

α

β β

α

α

β

Figure 4: Hierarchy tree of (2,3)-model of figure 3

The term under summation is independent of sum
index, because of the high regularity of the model.
Each configuration at level k̂ − 1 can be refined to
exactly the same number of configurations on level k̂.
Thus the recurrence simplifies to:

R
(α,β)
1 = 1

R
(α,β)

k̂
= R

(α,β)

k̂−1
β αactive(k̂−1),

which can be solved giving:

R
(α,β)

d̂
= β

αd̂−α
α−1 (3)

This shows that the size of the reachable state space is
double exponential in the depth of the (α, β)-model.
Substitute (2) to obtain the size of reachable state
space as a function of model size:

R(α,β)
n = β

[β
β+1

(n−1)(αβ−1)+αβ]logαβ α
−α

α−1 , (4)

for any legal choice of α, β and n. The R
(α,β)
n

function is Ω(2n
logαβ α

). Moreover if α = β then

R
(α,α)
n ∈ Ω(2

√
n). The size of reachable state space

for (α, β)-models is double exponential in the model
depth, but superpolynomial and subexponential in
the model size.

3.3 Succinctness

Let us deal with the unlimited case first, when ar-
bitrary many input and output symbols are allowed
in our statecharts. We shall see that (α, β)-models
cannot be translated to flat statecharts without su-
perpolynomial growth of size. Consider the top level
loop transition in any of (α, β)-models. This transi-
tion may be enabled in any reachable configuration.
Each configuration yields a unique exit sequence as
each state has a unique exit output assigned. Thus

the top transition represents R
(α,β)

d̂
exit sequences.

When flattening this transition, R
(α,β)

d̂
output reac-

tions need to be expressed. As many other sequences
are illegal, the only way to guarantee a sequence of ac-
tions to be generated in the flat models in a fixed or-
der is to place outputs on the same transition. Other-
wise, if the parts were split across various transitions,
no guarantee can be given in which order outputs will
be generated (the order of processing transitions is
fixed, but unknown and implementation dependent).
Thus at least as many transitions as reachable state
configurations are needed. Take α = β and the first
claim of theorem 1 is reached.

7

3.4 Input output alphabet

In order to prove the second claim of theorem 1,
namely that the same lower bound holds for binary
input output alphabets, it suffices to show a polyno-
mial translation of statecharts over arbitrary alpha-
bet to statechart over binary alphabet. The trans-
lation should preserve the semantics of original stat-
echart allowing triggering non binary events by en-
coding in binary sequences and similar observation of
non-binary effects with distinguishable binary words.

Input encoding

We assume a finite number of events in input alpha-
bet, indexed from 1 to r. We will use i + 1 bits to
encode the firing of event ei. First i zero symbols are
sent, followed by a single one symbol. The translated
model continues to receive zero symbols, advancing
the counter of arriving event, and fires relevant tran-
sitions, when one arrives. A fresh component, illus-
trated on figure 5, is added to the model being trans-
lated by means of concurrent composition.
Then the triggering event on every transition in

the old model is changed to 1. If the original tran-
sition was fired by event ei then an extra term is
conjuncted to transition’s guard enforcing that state
ei is active. A transition (s1, ei, g, os, s2) becomes
(s1, 1, g ∧ ei, os, s2). The size of each transition has
been increased by a constant factor.
The resulting model operates over binary input

symbols, still presenting the same behavior and prop-
erties (modulo encoding). Moreover the size of the
new model is linear in the number of transitions in
original model, as in the worst case as many new
states and new transitions have been added as there
were transitions in the original model (if each transi-
tion was fired by unique event).

Output encoding

The translation from models over arbitrary output al-
phabet to models over binary output alphabet is even
easier. It suffices to use any isomorphic encoding of
natural numbers in binary alphabet and instead of
every output generate a corresponding sequence of
binary outputs.
The above encodings are generally useful when-

ever complexity proofs for statecharts need to be gen-
eralized to models over binary alphabets. In our case
we notice that (α, β)-models can be translated within
polynomial bounds to a corresponding family over bi-
nary alphabets. The whole proof can be rephrased in

this framework – the properties of models are not
changed. All configurations are reachable and each
configuration gives rise to a unique set of exit se-
quences. One still obtains the same superpolynomial
order of growth, which finishes the proof of second
claim in theorem 1.

3.5 Improving the lower bound

Let us return to the lower bound on number of con-
figurations Ω(2n

logαβ α

). Note that the innermost ex-
ponent in the lower bound function is a constant
from the interval (0; 1). Moreover if one extends the
amount of concurrency in the model (controlled by α,
keeping the amount of sequentiality (controlled by β)
constant, the exponent approaches 1. Thus one can
give a lower bound of the size being arbitrarily close
to exponential in the sense of growth rate.
This shows that the third claim of theorem 1 is

true. It is harder to flatten more concurrent mod-
els, despite the fact that concurrency is preserved
by flattening. Hierarchy is strengthened by concur-
rency.

4 Robustness

Statecharts enjoy an abundance of variants [14]. For
this reason it is always important to evaluate appli-
cability of statecharts related results at least with re-
spect to major dialects. Since our source language is
a subset of typical statechart dialects we can directly
state several conclusions.

Corollary 1. Theorem 1 holds for source language of
complete statecharts with do reactions, entry actions,
join and fork transitions, cross-level transitions, sig-
nal communication, etc, given the same target lan-
guage.

In section 2.1 we have described a deterministic
semantics for conflictless statecharts. Most of the
statechart variants, however, allow some conflicts,
carefully specifying deterministic rules for resolution.
Fortunately our conflictless statecharts are still just
a special subset of the language, so:

Corollary 2. Theorem 1 holds also for statecharts
with conflict resolution, given the same target lan-
guage.

Some statecharts variants underspecify the or-
der of traversing children and processing transitions.
This can be achieved in our model by disregarding

8

init e1 e2 er
[0]/ [0]/ [0]/

[1]/ [1]/ [1]/

Figure 5: An extra component decoding the binary input.

semantic conditions on priority orders γ and π. In
such case multiple reactions are possible for a single
input event, and the set of traces is richer. However,
because relaxing γ introduces a non empty partial
order on exiting (instead of a total order) one still

has to implement at least R
(α,β)

d̂
sequences to imple-

ment the top level transition. Otherwise the correct
semantics of exits cannot be guaranteed.

Corollary 3. Theorem 1 holds also for deterministic
statecharts with nondeterministic semantics of pro-
cessing transitions and exits, given the same target
language.

Going further, some dialects, permit non-
resolvable conflicts, namely nondeterministic selec-
tion of conflicting transitions. However such nonde-
terministic statecharts are still including our (α, β)-
models:

Corollary 4. Theorem 1 holds also for flattening
fully nondeterministic statecharts, given the same
target language.

Author is not aware of any major statechart vari-
ant, for which the result presented would not hold.
The proof naturally suggests an algorithm of the

same asymptotic complexity for flattening of state-
charts. Thus for our (α, β)-models, which are a kind
of regular statecharts (they have regular tree struc-
ture) the bound given is tight:

Observation 1. Any (α, β)-model of n states can be

flattened to a statechart with size in Θ(2n
logαβ α

).

This also means that for regular statecharts in this
sense an exponential limit on the lower bound cannot
possibly be reached.
In many practical settings, the target language

allows signal communication, but for various reasons
flattening algorithm cannot take any significant ad-
vantage of it. For instance it is known that excessive
use of signal communication increases the hardness
of model checking, so signal-based flattening cannot
be efficiently applied in model-checking tools. The
lower bound of theorem 1 is then practically useful in
explaining what succinctness can be expected in such

applications. In fact it explains formally the reason
for size explosion in [6, 4], even if their target lan-
guages are richer, precisely because these algorithms
do not use signals in the flattening process.

Until now we have considered variations in the
input language. It should be emphasized that the
problem becomes easier when the queue-based signal
communication is permitted in the target language
[15]. Our (α, β)-models can now be flattened in poly-
nomial space. The essential difference in this new for-
mulation of the problem is that a signal queue, being
an ordered structure, can be used to enforce the or-
der of executing actions, so the argument of our proof
that each sequence of exits needs to be translated to a
fresh transition does not hold any more. Exit actions
can be translated to locally triggered transitions and
transitions can use sequences of signals to achieve rel-
evant sequences of outputs. The resulting statechart
is linear in the size of (α, β)-model. See [15] for de-
tails of the complete algorithm. Let as restate the
main theorem of [15]:

Theorem 2. For any hierarchical UML statechart S
there exists a flat statechart S ′ with queue-based sig-
nal communication such that S ′ . S and the size of
S ′ is at most polynomial in the size of S.

This result combined with the claim of theorem 1
indicates the main difference between signal-based
approach and flattening not using any message-like
communication.

5 Related Work

David et al. [6] claim that flattening a hierarchical
transition with their algorithm may lead to an ex-
ponential growth of the model in the depth of the
structure. Note that it exactly agrees with formula 3
presented above. Thus their algorithm can be used
as another argument explaining observation 1. The
question of establishing strict bounds for arbitrary
models in the size of the model still remains open.

Drusinsky and Harel[7] discuss the succinctness
introduced by cooperative concurrency, however they

9

do not consider the influence of hierarchy on succinct-
ness. The present result explores a different dimen-
sion of their succinctness space for statecharts.
Alur et al.[1] thoroughly discuss the impact of hi-

erarchy on model checking problems and the size of
models. However they omit the relation between con-
current hierarchical models and flat models in our
sense, thus their results cannot be directly used to
state the hardness of flattening. More over Alur et
al. exploit the sharing of subhierarchies in their se-
mantics, which is not commonly used in engineering
modeling languages (see UML statecharts).
As it has been mentioned before Wąsowski [15]

presents a polynomial flattening algorithm taking an
advantage of message passing, at the same time show-
ing that signal communication is a nontrivial exten-
sion to the language. An implementation of this al-
gorithm is presently used in SCOPE code generator
[11].

6 Conclusion & Future Work

Flattening has been formally defined as a semantics
preserving translation of hierarchical statechart to a
set of synchronized Mealy machines in absence of
signal communication. I have presented a subexpo-
nential, but superpolynomial, lower bound for this
problem, and studied the applicability of the result
for various dialects, including the standardized UML
statecharts. It has been formally shown that hierar-
chy and concurrency interplay in increasing the hard-
ness of the problem. In addition our proof contained
a generic technique of translating results for state-
charts over arbitrary alphabets to statecharts over
binary alphabets.
A number of actual flattening algorithms have

been indicated, which face the size explosion issue,
which has now been shown to be inherent for the
problem (under the conditions they have to meet),
not only for the algorithms themselves.
Our lower bound result presents an argument

against code generation techniques for statecharts,
which are based on flattening in absence of mes-
sage passing, or any other concept enforcing the or-
der of execution internally in the model. Such tech-
niques would be tempting otherwise, since lack of sig-
nal communication significantly lowers the usage of
writable memory, which is a crucial requirement in
many engineering applications, especially in the em-
bedded systems domain.
We conjecture that an algorithm similar to signal-

based flattening of [15] cannot be used for original
Harel’s statecharts, which use sets for storing pend-
ing signals instead of queues (as UML does). Thus
the result of theorem 1 is likely to be strengthened, by
allowing set-based signal communication in the tar-
get language. This remains the main open question
in the future work.

7 Acknowledgements

Author would like to thank Peter Sestoft and Kim
G. Larsen for reading and commenting on an earlier
version of this text.

References

[1] Rajeev Alur, Sampath Kannan, and Mihalis
Yannakakis. Communicating hierarchical state
machines. In Jiŕı Wiedermann, Peter van
Emde Boas, and Mogens Nielsen, editors, 26th
International Colloquium on Automata, Lan-
guages and Programming (ICALP), volume 1644
of Lecture Notes in Computer Science, pages
169–178, Prague, Czech Republic, July 1999.
Springer-Verlag.

[2] G. Behrmann, K. G. Larsen, H. R. Andersen,
H. Hulgaard, and J. Lind Nielsen. Verification of
hierarchical state/event systems using reusabil-
ity and compositionality. In International Con-
ference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS),
volume 1579 of Lecture Notes in Computer Sci-
ence, pages 163–177, Amsterdam, The Nether-
lands, March 1999. Springer-Verlag.

[3] Robert V. Binder. Testing Object-Oriented Sys-
tems. Models, Patterns and Tools. Addison-
Wesley, 2000.

[4] Kirill Bogdanov and Mike Holcombe. Properties
of concurrently taken transitions of Harel state-
charts. In Workshop on Semantic Foundations
of Engineering Design Languages (SFEDL),
Grenoble, France, April 2002.

[5] GregoryW. Bond, Franjo Ivancic, Nils Klarlund,
and Richard Trefler. Eclipse feature logic analy-
sis. In 2nd IP-Telephony Workshop, pages 100–
107, New York City, USA, April 2001.

10

[6] Alexandre David, M. Oliver Möller, and Wang
Yi. Formal verification of UML statecharts with
real-time extensions. In Ralf-Detlef Kutsche
and Herbert Weber, editors, Fundamental Ap-
proaches to Software Engineering (FASE), vol-
ume 2306 of Lecture Notes in Computer Science,
pages 218–232, Grenoble, France, April 2002.
Springer-Verlag.

[7] Doron Drusinsky and David Harel. On the
power of bounded concurrency I: Finite au-
tomata. Journal of ACM, 41(3):517–539, May
1994.

[8] David Harel. Statecharts: A visual formalism
for complex systems. Science of Computer Pro-
gramming, 8:231–274, 1987.

[9] David Harel and Amnon Naamad. The STATE-
MATE semantics of statecharts. ACM Transac-
tions on Software Engineering and Methodology,
5(4):293–333, 1996.

[10] Ella E. Roubtsova, Jan van Katwijk, Ruud C. M.
de Rooij, and Hans Toetenel. Transformation of
UML specification to XTG. In Dines Bjørner,
Manfred Broy, and Alexandre V. Zamulin, edi-
tors, Perspectives of System Informatics (PSI),
4th International Andrei Ershov Memorial Con-
ference, Revised Papers, volume 2244 of Lec-

ture Notes in Computer Science, pages 249–
256, Akademgorodok, Novosibirsk, July 2001.
Springer-Verlag.

[11] SCOPE: A statechart compiler, 2003.
http://www.mini.pw.edu.pl/~wasowski/scope.

[12] Anthony J. H. Simons. The compositional prop-
erties of UML statechart diagrams. In C. J. van
Rijsbergen, editor, Third Electronic Workshop
on Rigorous Object-Oriented Methods. British
Computer Society, 2000.

[13] Jørgen Staunstrup, Henrik Reif Andersen, Hen-
rik Hulgaard, Jørn Lind-Nielsen, Kim Guld-
strand Larsen, Gerd Behrmann, Kaare J.
Kristoffersen, Arne Skou, Henrik Leerberg, and
Niels Bo Theilgaard. Practical verification of em-
bedded software. IEEE Computer, 5(33):68–75,
2000.

[14] Michael von der Beeck. A comparison of state-
charts variants. In ProCoS: Third International
Symposium on Formal Techiniques in Real Time
and Fault-Tolerant Systems., volume 863 of Lec-
ture Notes in Computer Science, pages 128–148.
Springer-Verlag, 1994.

[15] Andrzej Wąsowski. Flattening Statecharts with-
out Explosions. Submitted, 2004.

11

