
Crossing the Gap between Semantics and Practice:

Crafting a Compiler for Statecharts

Extended Abstract

Andrzej Wąsowski?

IT University of Copenhagen
wasowski@it-c.dk

1 Introduction

Statecharts and various dialects based on state ma-
chines are popular both as main-stream modeling
languages and as a specification formalism used in
verification and model checking. The community of
users and researchers agrees that one of the main
advantages of the language is its good support for
complete methodology – support for modeling, ver-
ification and automatic program synthesis.
The wide acceptance of complete methodology

contradicts with reality. Program synthesis from
statechart models is discussed much more seldom
than other phases of the development process. Ineffi-
cient generation methods discourage end-users from
high-level description languages. Moreover very lim-
ited dissemination of results builds a definitely in-
correct impression that hardly anything is available
on software synthesis from statecharts (see sample
opinion in [4]).

2 Statecharts compilation survey

In the first part of the talk I will briefly present
a survey of statechart compilation methods trying
to determine the purpose and the specifics of each
method. I will use following four sources of informa-
tion:

1. Hardware logic synthesis from statecharts had
been widely discussed in eighties (see for in-
stance [5]). These approaches are seldom inter-
esting for software generation because of the
inherent concurrency in hardware implementa-
tions.

2. Numerous semantics definitions for statecharts
describe the behaviors of modeling constructs
using various theoretical frameworks. For most
of these frameworks a corresponding implemen-
tation scheme can be derived.

3. Papers on verification of statecharts propose
some model optimizations useful for making
the model-checking process easier. Some of this
model transformations/representations are in-
teresting from program synthesis perspective as
well.

4. Finally there are some direct contributions in
program synthesis for statecharts.

After having reviewed (some part of) this ma-
terial I have identified a few distinctive strategies.
In this talk I will pick up typical examples and try
to characterize them briefly. Interesting approaches
are: logics-based equational methods [8, 2], hierarchy
preserving methods[3], flattening methods [6] and
global automata methods [7]. I should also briefly
mention some program verification oriented meth-
ods (for example [9]) and comment on approaches of
popular object-oriented CASE tools ([11] contains a
small survey).

3 SCOPE compiler overview

In the second part of the talk, I will describe some
experience with implementation of SCOPE[1], a sim-
ple high-level code generator for statecharts. The se-
mantic structure should only be sketched shortly to
explain meaning of various components in generated
code. The details are described elsewhere [10]. I shall
mainly focus on the structure of the compiler itself.
Our compiler takes a model as an input and

translates it to runtime representation. This repre-
sentation consolidated with a static driver is inter-
preted at runtime (see fig. 1 for overview of the en-
vironment).
The task performed by hierarchy preserving

translator seems to be relatively simple. However ap-
parent difficulties emerge when ones tries to imple-
ment such translator in a clean and efficient way. It

? I would like to thank Peter Sestoft of IT University in Copenhagen for guidance throughout the project.



SCOPE compiler

runtime interpreterruntime representation runtime environment

statechart model
Compile-time

Run-time

Fig. 1. Flow of model execution in visualstate environment.

model optimizer CG addressCG front CG compiler (back)scope front-end CG dump

textual
model

abstract 
syntax

abstract 
syntax

intermediate
representation

IR + addressing data 
+ types.

C program
bits and pieces

Complete C
files

Fig. 2. Phases of statechart compiler as implemented in SCOPE. Shaded rectangles represent components of auto-
matic code synthesizer.

is no longer obvious how the tool should be sliced
into phases, and how those phases should be or-
dered. Traditional knowledge on the compiler struc-
ture does not help too much. The textbooks are
oriented on generating machine language programs,
while we are producing ... arrays of integers. SCOPE
compiler uses a tiny bytecode language suitable for
representing arrays of integer references as an inter-
mediate representation.
Runtime representation consists of several inte-

ger arrays reflecting state hierarchy, transitions, his-
tory vectors, current state vector, signal queue and
dispatch tables for actions and guards. The arrays
are not compressed excessively at the moment. The
only optimization made is inference of minimal in-
teger types to be used as cell types.
To achieve that I have split the compiler into four

separate phases (see fig.2). Each phase of the com-
piler is small and simple. Each welcomes another
kind of optimizations to be added in future. I will
comment on possibilities for optimizations in vari-
ous components. The choices include global model
transformation, sequential and parallel compaction
of transitions, broadcasts unrolling, table compres-
sions, etc.
Despite the lack of model optimizations SCOPE

produces executables which are about 15% smaller
than counterparts created with industrial implemen-
tation.

References

[1] SCOPE: A statechart compiler.
http://www.mini.pw.edu.pl/˜wasowski/scope.

[2] Beauvais, J.-R., Houdebine, R., Guernic,
P. L., Rutten, E., and Gautier, T. A trans-
lation of Statecharts and Activitycharts into Signal
equations. Tech. Rep. No 1182, IRISA: Institut de

Recherche en Informatique et Systemes Aléatoires,
Rennes Cedex, France, May 1998.

[3] Behrmann, G., Kristoffersen, K., and
G.Larsen, K. Code generation for hierarchical
systems. In NWPT’99 – The 11th Nordic Work-
shop on Programming Theory (Uppsala, Sweden,
Sept. 1999).

[4] Björklund, D., Lilius, J., and Porres, I. To-
wards efficient code synthesis from statecharts.
In Practical UML-Based Rigorous Development
Methods - Countering or Integrating the eXtrem-
ists. Workshop of the pUML-Group held together
with the UML’2001 (Toronto,Canada, October 1st,
2001), A. Evans, R. France, and A. M. B. Rumpe,
Eds., Lecture Notes in Informatics P-7, GI.

[5] Drusinsky, D. On Synchronized Statecharts. PhD
thesis, Department of Applied Mathematics, Weiz-
mann Institute of Science, Rehovot, Israel, 1988.

[6] IAR Inc. IAR visualSTATE
�

.
http://www.iar.com/Products/VS/.

[7] Maraninchi, F. The Argos language: Graphical
representation of automata and description of reac-
tive systems. In Proceedings of the IEEE Workshop
on Visual Languages (Kobe, Japan, October 1991).

[8] Maraninchi, F., and Halbwachs, N. Compiling
ARGOS into boolean equations. In Proc. 4th Int.
School and Symposium on Formal Techniques in
Real Time and Fault Tolerant Systems (FTRTFT)
(Uppsala, Sweden, Sept. 1996), vol. 1135 of Lecture
Notes in Computer Science, Springer-Verlag.

[9] Sekerinski, E., and Zurob, R. iState: A state-
chart translator. In UML 2001 - The Unified Mod-
eling Language, Toronto, Canada, October 2001
(2001), M. Gogolla and C. Kobryn, Eds., Lecture
Notes in Computer Science 2185, Springer-Verlag,
pp. 376 – 390.

[10] Wąsowski, A., and Sestoft, P. On the formal
semantics of visualSTATE statecharts. Tech. Rep.
TR-2002-19, IT University of Copenhagen, Sept.
2002.

[11] Zündorf, A. Rigorous object oriented software de-
velopment with Fujaba. Unpublished Draft, 2000.


