
SFEDL’04 Preliminary Version

On Succinctness of Hierarchical State Diagrams
in Absence of Message Passing

Andrzej Wąsowski

Department of Innovation
IT University of Copenhagen, Denmark

Email: wasowski@itu.dk

Abstract

We show a subexponential but superpolynomial lower bound for flattening problem
for statecharts. The result explains why common flattening algorithms explode, if
the signal communication is excluded from the target language. This specifically
affects flattening-based strategies for automatic model-based program synthesis.

Key words: statecharts, semantics, succinctness, code generation

1 Introduction

The formalism of hierarchical state diagrams underlies multiple modeling lan-
guages and tools, mostly variants of Harel’s statecharts [8]. Flattening, or
elimination of hierarchy, is an operation typically applied to hierarchical mod-
els both in theoretical and practical settings. It is used to give the semantics
of hierarchical languages [9] and to provide algorithms for code generation
[13], automatic testing [4] and model checking [6]. Flat models can be easily
interpreted with very limited writable memory usage. They are also easier to
analyze for worst-case execution time approximations, as they can be inter-
preted using a single loop. Finally they can be more easily translated to
hardware circuits. Due to this multitude of applications, complexity of the
flattening problem appears an important property of the language. Its im-
pact has been studied previously, however only questions relevant to model-
checking community have been addressed. Present paper belongs to the line of
new developments discussing succinctness of hierarchical models from program
synthesis perspective. We show a superpolynomial lower bound for flattening
translations to languages without signal communication.

We proceed as follows. Section 2 introduces hierarchical and flat state-
charts, defines flattening and formulates the main claim, which is then proved
and discussed in section 3. Section 4 is devoted to related work and remaining
open problems. We conclude in section 5.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

2 Problem definition

2.1 Source Language

Let State comprise two disjoint finite classes Stateand and Stateor, of and-states
and or-states, with a hierarchy ordering ↘⊆ State × State such that:

[and root] root ∈ Stateand
[and leaves] ∀s ∈ Stateor. ∃s′ ∈ Stateand. s ↘ s′

[alternation] ∀s′ ↘ s. (s∈Stateand ∧ s′∈Stateor) ∨ (s∈Stateor ∧ s′∈Stateand)

[rooted] ∀s ∈ State.root ↘∗ s

[acyclic] ∀s, s′ ∈ State. ¬(s′ ↘+ s ∧ s ↘+ s′)

[no sharing] ∀s, s′, s′′ ∈ State. s′ ↘ s ∧ s′′ ↘ s ⇒ s′ = s′′

If s′ ↘ s then s is a child of s′, s′=parent(s) and s∈children(s′). The relation
defines a directed tree on states. The root and leaves are and-states. All
children of and-states are or-states and vice-versa. Let Event and Output be
finite sets of events and outputs and Guard be a set of synchronization con-
ditions over states generated by the following grammar g::=state|g ∧ g|¬g. A
transition is a tuple (s, e, g, os, t) ∈ Trans ⊆ Stateand×Event×Guard×Output

∗×
Stateand, where s is a source state, t—a target state, e—a triggering event and
os—an output sequence. We write s [e:g]/os

−−−−−−→t instead of (s, e, g, os, t)∈Trans.
All transitions are flat, so parent(s)=parent(t) or s=t=root . We assume that
the source state is contained in the guard, so g⇒s.

Each or-state s has a distinguished initial child ini(s), entered whenever s

is entered. A sequence of exit outputs ex(s) is assigned to every and-state s.
Every exit of s generetes ex(s). If any and-state is active, then all its children
are active. If any or-state is active, then so is exactly one of its children. A
statechart S is a tuple S = (Stateand, Stateor,↘, ini, ex,Event ,Trans).
The set of active states σ⊆State is called an active configuration. A tran-

sition is enabled if its triggering event e occurs and the guard is satisfied in σ.
It fires by exiting the scope, producing the outputs and entering the target.
Exit actions are generated in a bottom-up manner, while entry is performed
top-down. The order of hierarchy traversal is implementation dependent, but
fixed. We model this choice using an injection γ : State → N:

σ1 � g 〈s, σ1〉−−−→exit 〈σ2, o1〉 〈t, σ2〉−−−−→enter 〈σ3〉

〈s [e:g]/o−−−−−→t, σ1, e〉−−−→fire 〈σ3, o1ˆo〉

s ∈ Stateand {s1, . . . , sn}=children(s) γ(si)<γ(si+1) 〈si, σi〉−−−→exit 〈σi+1, oi〉

〈s, σ1〉−−−→exit 〈σn+1 \ {s}, o1ˆ . . . ˆonˆex(s)〉

s ∈ Stateor s′∈ children(s) ∩ σ1 〈s′, σ1〉−−−→exit 〈σ2, o〉

〈s, σ1〉−−−→exit 〈σ2 \ {s}, o〉

s ∈ Stateand s1, . . . , sn = children(s) 〈ini(si), σi〉−−−−→enter 〈σi+1〉

〈s, σ1〉−−−−→enter 〈σn+1 ∪ {s, s1, . . . , sn}〉

A statechart executes in steps, interpreting a stream of incoming events. Each
step consists of firing all enabled transitions. The iteration order is implemen-
tation dependent, but fixed, which is modeled by the injection π : Trans → N:

e ∈ Event {t1, . . . , tn} = Trans π(ti) < π(ti+1) 〈ti, σi, e〉−−−→fire 〈σi+1, oi〉

〈σ1, e〉−−−−−→macro 〈σn+1, o1ˆ . . . ˆon〉

The initial configuration σ0 is computed by 〈root , ∅〉−−−−→enter 〈σ0〉.

A statechart is conflictless if for any two transitions enabled in the same
step their source states are not related by ↘∗ . We only consider conflictless
statecharts for now. Dynamic semantics is given by execution traces composed
of input events and sequences of outputs:

[[S]]γπ = traces(S, γ, π) ⊆ (Event × Output ∗)∗.

Traces are generated by feeding −−−−−→
macro with all possible sequences of events.

Each trace element comprises an event and a complete sequence of outputs—
a reaction. Models are input enabled, so there is a trace for any sequence of
input events, but some reactions are empty. Due to conflictlessness there is
only one reaction for a given event in a given global state.

The model depth d is the number of states in the longest path from root
to a basic state. An and-depth d̂ excludes or-states from paths (d̂=

⌈

d
2

⌉

). The
size of the model depends on sizes of actions, guards, output sequences and
states contained.

2.2 Target Language

AMealy machine is a finite state machine with transitions labeled by triggering
events, guard conditions and sequences of atomic outputs. A flat statechart
(Fig. 1) is a set of concurrent Mealy machines operating in synchronous steps
and communicating by guard synchronizations. In other words this is a hi-
erarchical statechart such that its ex function constantly returns the empty
sequence and its ↘ relation forms a shallow tree (d = 3 and d̂ = 2). The
semantics is defined in the same manner as for hierarchical statecharts.

2.3 Flattening

Neither the source nor the target language incorporate a message passing
mechanism, also known as a signal communication. Many statechart variants,
including UML and Harel’s statecharts, provide a facility for generating local
events as outputs. Generated events are normally not available in the same
step, but stored for later interpretation in a queue. A single reaction step, or a
macrostep, consists of multiple microsteps processing locally generated events
as long as no more are available. Our claim is that this sequencing facility is
a non-trivial extension, introducing a superpolynomial gain in size.

B

D F G

C
A

E

[e{F}{}]/a : G

[f{}{E}]/

[f{}{}]/

Fig. 1. An example of a flat statechart.

Definition 2.1 Statechart S ′ implements a statechart S iff every implemen-
tation of S ′ realizes legal executions of some implementation of S:

S ′ . S ⇐⇒ ∀γ1π1.∃γ2π2. [[S ′]]γ1π1 ⊆ [[S]]γ2π2

Definition 2.2 Let F be an algorithm transforming statecharts. F is a flat-
tening algorithm if for any hierarchical S it yields a flat S ′ such that S ′ . S.

Note that our definition is different from generation of a single product
machine. Our understanding of hierarchy, concurrency and flattening is rather
similar to that of [1,3,12,6] and substantially different than that of [10,11].
Also note that trace inclusion is a rather strong conformance requirement for
input-enabled deterministic systems.

Theorem 2.3 There exists a hierarchical statechart S such that for any flat
statechart S ′ implementing it, S ′ . S:

(i) The size of S ′ is in Ω(2
√

s), where s represents the size of S.

(ii) The previous claim holds if S is restricted to binary inputs and outputs.

(iii) The lower bound with growth rate arbitrarily close to the exponential, can
be constructed by choosing S with sufficient amount of concurrency.

3 Proof

The proof constructs a family of models such that each of its members has a
superpolynomial reachable state space and each reachable configuration yields
a unique sequence of exits. Such sequences cannot be represented in any flat
model without equivalent superpolynomial expansion of transitions.

3.1 Family of (α, β)-models

Consider a family of statecharts with fixed number of children: α for nonbasic
and-states and β for or-states (α, β ≥ 2). Each and-state has a unique exit
output and a transition sourced in it, which is triggered by a unique event.
The targets are selected in such a way that there is a transition cycle in every
state machine at any level, so that every legal configuration is reachable.

A specific family member is indicated by its parameters and size, i.e. an
(α, β)-model of and-depth d̂ or an (α, β)-model of n states (where n has to be
consistent with α and β). Fig. 2 presents a (2,3)-model of and-depth 3. The
size of actions and guards is constant for (α, β)-models and the number of

β β

α

β β

α

β β

α

β

β β

α

β β

α

β β

α

α

β

Fig. 2. A (2,3)-model of and-depth 3, also a (2,3)-model of 57 states.

transitions equals the number of states. Thus we can use the number of states
n as a measure over (α, β)-models instead of a more general notion of size.
The size of reachable state space for (α, β)-models can be calculated based on
the fact that it equals all legal configurations:

R
(α,β)

d̂
= β

αd̂
−α

α−1 .

This shows that the size of the reachable state space is double-exponential in
the depth of the (α, β)-model and further for any legal choice of α, β and n:

R(α,β)
n = β

[β
β+1

(n−1)(αβ−1)+αβ]
logαβ α

−α

α−1 .

The R
(α,β)
n function is Ω(2n

logαβ α

). Moreover if α = β then R
(α,α)
n ∈ Ω(2

√
n).

The reachable state space size is superpolynomial and subexponential in n.

3.2 Succinctness

Consider the top level loop transition in any of (α, β)-models. This transition
may be enabled in any reachable configuration. Each configuration yields a
unique exit sequence as each state has a unique exit output assigned. Thus
the top transition represents R

(α,β)

d̂
exit sequences. When flattening this tran-

sition, R
(α,β)

d̂
output reactions need to be expressed. As many other sequences

are illegal, the only way to guarantee a sequence of actions to be generated
in the flat models in a fixed order is to place outputs on a single transition.
Otherwise, if the parts were split across various transitions, no guarantee can
be given in which order outputs will be generated. Thus at least as many
transitions as reachable state configurations are needed. Take α = β and the
first claim of theorem 2.3 is achieved.

init e1 e2 er
[0]/ [0]/ [0]/

[1]/ [1]/ [1]/

Fig. 3. An additional component decoding the binary input.

In order to prove the second claim it suffices to show a polynomial transla-
tion of statecharts over arbitrary alphabet to statecharts over binary alphabet.

Input encoding. Assume Event = {e1, . . . , er}. We will use i + 1 bit events
to encode event ei. First i zero symbols are sent, followed by a single one
symbol. The translated model continuesly receives zero symbols, advancing
the counter state. When one arrives, relevant transitions are fired (Fig. 3). A
fresh concurrent component, is added to the translated model. The triggering
event on every transition in the original model is changed to 1. If the original
transition was fired by event ei then an extra term is conjuncted to its guard,
enforcing that ei is active. A transition s1

[ei:g]/os
−−−−−−−→s2 becomes s1

[1:g ∧ ei]/os
−−−−−−−−−−→s2.

The resulting model operates over binary input symbols, still presenting
the same behavior and properties (modulo encoding). The size of the new
model is linear in the number of events and transitions in the original model.

Output encoding. A similar encoding can be proposed for outputs. A unique
binary sequence is generated instead of the original output and the model
grows linearly in the number of outputs.

The entire proof can now be rephrased as the essential properties of models
are not changed. The same superpolynomial order of growth is obtained,
proving the second claim of theorem 2.3.

Finally note, that the innermost exponent in Ω(2n
logαβ α

) is a constant from
the (0; 1) interval. It approaches 1 as the amount of concurrency (α) grows
(with fixed amount of sequentiality β). A lower bound with the growth rate
arbitrary close to the exponential is constructed by selecting sufficiently big
α, achieving the final claim of theorem 2.3. The influence of hierarchy on
succinctness is strengthened by the presence of concurrency.

3.3 Robustness

Statecharts enjoy an abundance of variants [2]. Since our source language is a
subset of typical dialects, we can state several direct conclusions on the lower
bounds. Theorem 2.3 holds for source language of complete statecharts with
do reactions, entry actions, join and fork transitions, cross-level transitions,
signal communication, etc, given the same target language. Fortunately since
our conflictless statecharts are just a special case of statecharts with conflict
resolution (for example UML statecharts, or Harel’s statecharts), the theorem
holds also for such extended dialects. Similarly the introduction of nondeter-
minism in the order of processing of transitions, or in the conflict resolution,
does not break the proof. One still has to use a single transition for each exit
scenario to implement the top-level loop in a correct way.

The proof naturally suggests a flattening algorithm of the same asymptotic
complexity. Consequently the bound is tight for (α, β)-models. Any (α, β)-
model of n states can be flattened to a statechart with size in Θ(2n

logαβ α

).

In many practical settings, the target language allows signal communica-
tion, but for various reasons flattening algorithm cannot use it. For instance
it is known that excessive use of signal communication increases the hardness
of symbolic model checking, so signal-based flattening cannot be efficiently
applied in model-checking tools. The lower bound of theorem 2.3 is then
practically useful in explaining what succinctness can be expected in such
applications. In fact the theorem discloses the reason for explosion in [6,5].
All algorithms mentioned there target languages with signal communication,
but do not use signals in the flattening process.

Last but not least, the flattening problem becomes easier when the queue-
based signal communication is permitted in the target language [13]. The
essential difference is that a signal queue, being an ordered structure, can be
used to enforce the order of output generation. The argument of our proof that
each sequence of exits needs to be translated to a fresh transition does not hold
then. Exits can be translated to locally triggered transitions and transitions
can use sequences of signals to achieve relevant sequences of outputs. Let us
restate the main theorem of [13]:

Theorem 3.1 For any hierarchical UML statechart S there exists a flat state-
chart S ′ with queue-based signal communication such that S ′ . S and the size
of S ′ is at most polynomial in the size of S.

4 Related Work

David et al. [6] claim that flattening a hierarchical transition with their algo-
rithm may lead to an exponential growth of the model in the depth of the
structure, which confirms our general observation. Drusinsky and Harel [7]
discuss the succinctness of cooperative concurrency without considering the
influence of hierarchy on succinctness. Our result explores a new dimension
of their statecharts succinctness space. Alur et al. [1] analyze the impact of
hierarchy on model checking and succinctness, omitting the relation between
concurrent hierarchical models and flat models in our sense. Their results
cannot be directly used to state the hardness of flattening. Moreover they
exploit sharing of subhierarchies, which is not commonly supported by tools.

5 Conclusion

Flattening has been formally defined as a semantics preserving translation of
hierarchical statechart to a set of synchronized Mealy machines without signal
communication. We have presented a subexponential, but superpolynomial,
lower bound for this problem, and studied the applicability of the result for

various dialects, including UML statecharts. It has been shown that hierarchy
and concurrency cooperate in increasing the hardness of the problem. The
proof contained a general technique for translating results for statecharts over
arbitrary alphabets to statecharts over binary alphabets.

We argue against flattening based code generation not using signal commu-
nication or any similar concept enforcing the execution order. Such techniques
would be tempting otherwise, since lack of signals lowers the usage of writable
memory—a scarce resource in many embedded systems applications.

References

[1] Alur, R., S. Kannan and M. Yannakakis, Communicating hierarchical state
machines, in: J. Wiedermann, P. van Emde Boas and M. Nielsen, editors,
Proceedings of ICALP, LNCS 1644 (1999), pp. 169–78.

[2] Beeck, M., A comparison of statecharts variants, LNCS 863 (1994), pp. 128–48.

[3] Behrmann, G., K. G. Larsen, H. R. Andersen, H. Hulgaard and J. Lind
Nielsen, Verification of hierarchical state/event systems using reusability and
compositionality, in: Proceedings of TACAS, LNCS 1579 (1999), pp. 163–77.

[4] Binder, R. V., Testing Object-Oriented Systems. Models, Patterns and Tools,
Addison-Wesley, 2000.

[5] Bogdanov, K. and M. Holcombe, Properties of concurrently taken transitions
of Harel statecharts, in: Proceedings of SFEDL, Grenoble, France, 2002.

[6] David, A., M. O. Möller and W. Yi, Formal verification of UML statecharts
with real-time extensions, in: R.-D. Kutsche and H. Weber, editors, Proceedings
of FASE, LNCS 2306 (2002), pp. 218–32.

[7] Drusinsky, D. and D. Harel, On the power of bounded concurrency I: Finite
automata, Journal of ACM 41 (1994), pp. 517–39.

[8] Harel, D., Statecharts: A visual formalism for complex systems, Science of
Computer Programming 8 (1987), pp. 231–74.

[9] Harel, D. and A. Naamad, The STATEMATE semantics of statecharts, ACM
Transactions on Software Engineering and Methodology 5 (1996), pp. 293–333.

[10] Roubtsova, E. E., J. van Katwijk, R. C. M. de Rooij and H. Toetenel,
Transformation of UML specification to XTG, in: D. Bjørner, M. Broy and
A. V. Zamulin, editors, Proceedings of PSI, LNCS 2244 (2001), pp. 249–56.

[11] Simons, A. J. H., The compositional properties of UML statechart diagrams, in:
C. J. van Rijsbergen, editor, 3rd Electronic Workshop on ROOM (2000).

[12] Staunstrup, J., H. R. Andersen, H. Hulgaard, J. Lind-Nielsen, K. G. Larsen,
G. Behrmann, K. J. Kristoffersen, A. Skou, H. Leerberg and N. B. Theilgaard,
Practical verification of embedded software, IEEE Computer 5 (2000), pp.68–75.

[13] Wąsowski, A., Flattening Statecharts without Explosions (2004), submitted.

	Introduction
	Problem definition
	Source Language
	Target Language
	Flattening

	Proof
	Family of (,)-models
	Succinctness
	Robustness

	Related Work
	Conclusion
	References

