
Smaller Means Cheaper

• Specialized variant can often be fit into cheaper hardware.
• Memory is cheap? Industry accounting does not confirm this.
• Save 1$ per item replacing an 8K with 16K RAM chip.
• With production goal being 400 000 items a year for about 8

years this money can’t be ignored.
• Will memory become cheaper? Probably yes

– need for small memory software will not disappear
– everybody wants smaller and more portable devices with

lower power consumption
– which yet can do more than today’s state of the art.

Outline

• Model restriction and environment specifications
• Syntax and semantics of Restriction Language
• Implementation relation, behavioral guarantees
• Current work
• Summary

Automatic Generation of Program Families
by Model Restrictions

Andrzej Wa,sowski
Department of Innovation

IT University of Copenhagen

wasowski@itu.dk
http://www.mini.pw.edu.pl/˜wasowski/scope

1 September, SPLC 2004, Boston, MA

IT University of Copenhagen

Erik’s CD Player

A CD Player without Alarm Clock
Execution environment determines a variant of the CD player

No alarm means no SetAlarm and no SwitchAlarm events

A CD Player without Alarm Clock (II)

restriction WithoutAlarm {

impossible SetAlarm();
impossible SwitchAlarm();

};

WithoutAlarm CDPLAYER;

• Alarm-related inputs impossible
• Specialized using data-flow and reachability analysis
• Dead code elimination easier due to explicit control flow

Outline

• Model restriction and environment specifications
• Syntax and semantics of Restriction Language
• Implementation relation, behavioral guarantees
• Current work
• Summary

Product Lines Architecture
and Specialization

int main (void) { int main (void) { int main (void) {

spec. spec.

programs

re
st

ric
tio

n

re
st

ric
tio

n

synthesis synthesis synthesis

restriction language

products hardware+software

the least product

modeling language

target language

models

the greatest product

One would like:

• A notion of implementation between products, safety guarantees
• A hierarchy on specifications supporting stepwise development

A Family of Embedded Systems

• Family of products vs Family of programs
• Structured family (P,�) of n embedded programs, where � is a

restriction relation:

p1 � p2 , p1 may be obtained from p2

by removing some functionality

• In linear case (product line):

p1 � p2 � . . . � pn

• In general a partial order with a single greatest element, i.e. the
program which is able to do ”everything” specific to the family.

• A restriction hierarchy dual to extension hierarchy

Restriction vs Extension

most abstract

most concrete

RESTRICTION HIERARCHY

& least behavior

& most behavior

most abstract

most concrete

OO INHERITANCE HIERARCHY

& least features

& most features

A −. B : A extends B A → B : B is a restriction of A

CD Player with no Alarm Clock,
no Shuffle and no Continuous Play

Shuffle and Loop events are impossible.

CD Player with no Alarm Clock,
no Shuffle and no Continuous Play (II)

restriction Least
restricts WithoutAlarm {

impossible Loop();
impossible Shuffle();

};

Least CDPLAYER;

Obtained by further restriction of the version with no alarm clock.

Specifying Restrictions

• Easy for control-oriented systems: restrict inputs and outputs
• Restriction is a description of an environment
• Restriction Language (RL) a custom language for writing

restrictions:

restriction NoBeep {
impossible e; // impossibility constraint
const int v=1; // value constraint
const int f(int)=4; // (func.) value constraint
dead int v; // liveness constraint
pure void f(); // purity constraint

}

restriction Name restricts ancest1, ..., ancestn

{ ... };

InterfaceName ModelName;

Semantics of RL
Assume the semantics of model m is given by CSP-like traces.

RL[[·]]m : P(traces()) −→ P(traces())

RL[[impossible e]]m = λS. { t | t ∈ S ∧ ¬(〈e〉 in t) }

RL[[const T v = k]]m = λS. { t | t ∈ S ∧ ∀〈v.l〉 in t. l = k }

RL[[const T f() = k]]m = . . .

RL[[dead T v]]m = λS. { t � (αm\{v.l | ∀l ∈ values(T)}) | t ∈ S }

RL[[pure T f()]]m = . . .

RL[[c1;c2]]m = RL[[c2]]m ·RL[[c1]]m

Characteristics

• Well suited for families of relatively simple devices like home
appliances, Hi-Fi equipment, toys (!), etc.

• Not that useful for highly configurable complex designs (satellite)
• Lightweight – runtime efficiency only depends on quality of

specializer. No runtime overhead (contrary to OO-languages).
• One difficult implementation — common model. Numerous

small restriction specifications in RL.
• Prototyping is fast. Easily fine tune resources and functionality.
• Enjoy behavioral inheritance.

Outline

• Model restriction and environment specifications
• Syntax and semantics of Restriction Language
• Implementation relation, behavioral guarantees
• Current work
• Summary

Implementation Relation (II)

An execution trace of CD player without Alarm/Shuffle/Loop:

t = 〈StandBy, Play, startPlay.(), Stop〉

It is included in the following trace of the most general CD player:

t ′ = 〈StandBy, SwitchAlarm, SwitchAlarm, Play, startPlay.(),Stop〉

[Soundness of Restriction]

If m1 has been obtained from m2 by restriction of sensors and
actuators then m1 implements m2. More precisely:

m1 � m2 ⇒ m1 . m2.

This relies on the fact that the restriction is sound (accurately
describes the environment) and only performs semantics
preserving optimizations.

Current Work
Dynamic Environments

• Restriction specifications presented above are special cases of
state-independent properties of dynamic environments.

• Already small case studies show that static constraints are not
sufficient:

– how to specify a CD player which only has the continues play
mode?

– simply ignoring output is often too strict. One wants to
substitute some outputs for others.

• Formulated a theory of dynamic environments with color-blind
properties. i.e. anvironments which can produce only some
input traces and are tolerant to some mutations in program’s
outputs.

• Working on implementation of dynamic optimizer, which will be
more “creative” than simple restrictions.

Outline

• Model restriction and environment specifications
• Syntax and semantics of Restriction Language
• Implementation relation, behavioral guarantees
• Current work
• Summary

Implementation Relation

Intuitively m1 implements m2 if it can be executed with the same
trace, perhaps extended by some m2-specific events.

[Implementation]

Two models m1 and m2 such that the set of inputs accepted by m1 is
the subset of the inputs accepted by m2 (αm1 ⊆ αm2).

Then m1 implements m2, written m1 . m2, iff

∀t1 ∈ traces(m1). ∃t2 ∈ traces(m2). t1 = t2 � αm1.

Summary

• Execution environments define product variants
• Model restriction can be used to generate variants of control

algorithms for embedded systems.
• Improves code reuse and maintainability
• Preserves behavioral inheritance (safety)
• Can be extended to behavioral specifications of environments

