
Local Microcode Compact ion Techniques

DAVID LANDSKOV, SCOTT DAVIDSON, AND BRUCE SHRIVER
University of Southwestern Louisiana, Computer Science Department, P.O. Box 44330 U.S.L., Lafayette,
Louisiana 70504

PATRICK W. MALLETT
Computer Sciences Corporation, 6565 Arlington Boulevard, Falls Church, Virginia 22046

Microcode compaction is an essential tool for the compilation of high-level language
microprograms into microinstructions with parallel microoperations. Although
guaranteeing minimum execution time is an exponentially complex problem, recent
research indicates that it is not difficult to obtain practical results. This paper, which
assumes no prior knowledge of microprogramming on the part of the reader, surveys the
approaches that have been developed for compacting microcode. A comprehensive
terminology for the area is presented, as well as a general model of processor behavior
suitable for comparing the algorithms. Execution examples and a discussion of strengths
and weaknesses are given for each of the four classes of loc .al compaction algorithms:
linear, critical path, branch and bound, and list scheduling. Local compaction, which
applies to jump-free code, is fundamental to any compaction technique. The presentation
emphasizes the conceptual distinction between data dependency and conflict analysis.

Keywords and Phrases: compaction, data dependency, horizontal architecture, horizontal
optimization, microcode compaction, microinstruction, microprogram, parallel, resource
conflict, scheduling

CR Categories: 4.12, 6.21, 6.33

INTRODUCTION

As the use of microprogramming increases,
it becomes costly to write microprograms
in unstructured unwieldy languages. The
same pressures that led to the widespread
acceptance of conventional high-level lan-
guages now apply to microprogramming
[DAvI78]. The time is long overdue for the
development of machine-independent,
high-level microprogramming language
compilers.

This work was supported in part by the National
Science Foundation under Grant MCS 76-01661.

Microprogrammable processors that al-
low simultaneous control of several hard-
ware resources present special challenges
to the implementor of a high-level language
compiler. These horizontal processors must
have their microprograms compacted in or-
der to run efficiently. Compaction involves
choosing from the possible arrangements of
concurrent activities one that will minimize
the execution time of the microprogram
and possibly its size as well.

The first step in such a compaction is the
division of the program into branch-free
segments. The analysis, or local compac-
tion, of one of these segments is an expo-

Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.
© 1980 ACM 0010-4892/80/0900-0261 $00.75

Computing Surveys, Vol. 12, No. 3, September 1980

262

CONTENTS

• D. Landskov, S. Davidson, B. Shriver, P. W. Mallett

INTRODUCTION
DefinitiQn of the Problem
The Minimum Manhole Shifts Analogy
How This Paper Is Organized

1. DATA DEPENDENCY ANALYSIS
1.1 The Definition of Data Dependency
1.2 Extending the Data Dependency Concept
1.3 Forming a Data Dependency Graph

2. DESCRIBING THE HOST MACHINE
2.1 Micmoperation Tuples
2.2 Rehtionships Between Tuples

3. FORMING COMPLETE INSTRUCTIONS
3.1 Tile FormCIs Algorithm
3,2 Alternative Approaches

4. COMPACTION ALGORI~4MS
4.1 The Linear, Algorithm

• 4.2 The Critical Pafit Algorithm
4.3 The Branch and Bound Algorithm
4.4 Branch and Bound Heuristics and List Sched-

unng
4.5 Computational Complexity
4.6 Register Allocation

5. CONCLUSIONS
GLOSSARY
ACKNOWLEDGMENTS
REFERENCES

T

nentially complex problem, i.e., one that is
time consuming to calculate. In the past,
because of this complexity, it was feared
that a compiler capable of generating effi-
cient horizontal microcode would run too
slowly to be. usable. Because micropro-
grams are at the lowest programmable
level, their efficiency directly affects the
efficiency of the entire system.

Recent research [TOKo77, MALL78,
WOOD79, FXSH79] indicates that local com-
paction algorithms can be practical. De-
spite the theoretical computational com-
plexity, optima[or near-optimal results can
be found in a reasonable (i.e., nonexponen-
tial) amount of time. Thus one of the major
obstacles to practical microcode compilers
for horizontal machines is surmountable.

This paper surveys the various ap-
proaches that have been taken for com-
pacting microcode [RAMA74, TABA74,
TSUC74, YAU74, DEWx75, AGER76, DASG76,
MALL78, WOOD78, FISH79] . Clear defini-
tions are presented for the terms required

to understand this area, since the variations
in terminology and the lack of a compre-
hensive vocabulary have constituted a ma-
jor problem. This paper presents a unifying
terminology for studying the issues in-
volved and applies this terminology to the
different approaches.

The development of compaction algo-
rithms in existing literature is based on a
number of different models of the processor
environment. These differences make com-
parison of the algorithms difficult, and
sometimes model differences are confused
with the differences in the algorithms them-
selves. This paper presents a model which
incorporates the major features of existing
models, yet avoids unnecessary details. All
of the algorithms presented are explained
in terms of this general model.

Local compaction is a fundamental part
of any compaction process. There are four
major classes of algorithms for locally com-
pacting microcode: linear analysis, critical
path, branch and bound, and list schedul-
ing. Each of these classes is explained using
the terms defined in this paper. A common
example illustrates the execution of each
kind of algorithm. There are also detailed
presentations of two nontrivial support al-
gorithms which are rarely explained in the
literature.

Definition of the Problem

A microprogram is a sequence of microin-
s t ruc t ions (MIs). A microprogram is
stored in a memory, often a special memory
called the control store, from which the
instructions are executed one at a time.
During its execution, an MI is the control
.word for its machine.

Each separate machine activity specified
in an MI is called a m i c r o o p e r a t i o n (MO).
Thus an MI can be characterized as a set of
MOs. A field is a collection of control word
bits that controls a primitive machine ac-
tivity. An MO requires one or more fields
in order to execute. The format of a control
word determines how many and which MOs
can be placed together in an MI. Figure 1
shows the relationship between fields and
microoperations in the control word orga-
nization for a hypothetical machine. If only

~one or a few MOs can fit into an MI, the

Computing Surveys, Vol. 12. N 0. 3, September 1980

Fieldl

Local Microcode Compaction Techniques

Source Destination
Field2 Field Field

263

(a)

Field1 Field2 Source Destination

rno~: ADD d
too2: MOVE s
mo3: SHIFTL n
mo4: SHIFTR n

where s, d E AC (accumulator), RA (reg A), RB, or SH (shifter); n ~ I. ,4.
(b)

MOVE empty

I ISHIFTL 13R I
(c)

FIGURE 1. Example control word organization. (a)
Microinstruction format. (b) Partial list of microop-
erations. (c) Two possible microinstructions.

machine is said to have a ver t ica l archi-
tecture. Otherwise it is said to have a
hor izonta l a rch i tec ture . A more detailed
discussion of control word format can be
found in DASG79.

The microcode c o m p a c t i o n p r o b l e m is
as follows. Suppose that for a particular
machine, the hos t machine , we are given
a microprogram expressed as a sequence of
MOs. These MOs are to be placed into MIs
so that the microprogram execution time is
minimized. This must be done under the
restriction that the resulting sequence of
MIs must be semantically equivalent to the
original sequence of MOs. "Semantically
equivalent" means that if both sequences
are executed, the same input always results
in the same output. The original sequence
of MOs is not executable as it stands but
can easily be made executable by placing
each MO in a separate MI. Some MOs may
have to be placed in the same MI as a
previous MO, as explained in the section on
coupling. Informally, the problem is to

"compact" the program into a small mem-
ory space.

We discuss microcode compaction for
horizontal architectures. Although compac-
tion can be performed for any architecture,
including a vertical one, the compaction
problem is only interesting if a useful con-
currency of MO execution can be achieved.
Not only are vertical architectures limited
in their potential concurrency, but this lim-
itation is one of the justifications of their
design. Vertical machines are easier to mi-
croprogram precisely because they avoid
the time-consuming and error-prone pro-
cedure of manually analyzing concurrency.

In order to analyze possible concurrent
activity, the microprogram is divided into
straight-line microcode sections.

Definition. A straight-Hne microcode
sec t ion (ELM) is an ordered collection of
MOs with no entry points, except at the
beginning, and no branches, except possibly
at the end.

Computing Surveys, Vol. 12, No. 3, September 1980

264 • D. Landskov, S. Davidson, B. Shriver, P. W. Mallett

HLL i '"
microprogram

Compile to
MO level

G e n e r a t e MOs

Apply conventional
code optimization

List of
MOs

Host MO
Definition

Table

Analyze
flow of control

SLMs
i !

(Locally) compact
each SLM

List of
Mls

IZIOgl~ "2, One poa~)le microcode compilation system.

SLMs are also known as basic blocks.
Within ~ SLM, minimizing execution time
is achieved by minimizing the number of
compacted microinstructions. Analysis of a
single SLM is called local analysis , and of
more than one SLM, global analysis.

In global analysis, minimizing the num-
ber of microinstrUctions does not necessar-
ily minimize execution time, since some
SLMs may be executed many more times

than others. Global analysis is very much
an active research problem [TOKo78,
DAso79, WooD79, FzSH79]. Interesting ap-
proaches based on treating a compacted
SLM as a primitive in a more global SLM
are found in WOOD79 and FISH79. Our pa-
per is confined to the local analysis prob-
lem, which is examined in detail.

The role of local compaction analysis in
a high-leval microprogramming language

C o m p u ~ Surve:~J, Vol. 1~ NO. 3, September 1980

Local Microcode Compaction Techniques • 265

, I
COMPACT
EACH SLM I

FI(}URE 3. Subalgorithm modules
BuildDDG and FormCIs are used

translation system [cf. MALL75] is shown
in Figure 2. Two relatively distinct analyses
must be performed as part of the local
compaction process (see Figure 3). The way
in which data are passed from MO to MO
forces some MOs to be kept in the order in
which they appeared in the original SLM.
Data dependency ana lys i s decides the
partial ordering. Confl ict ana lys i s deter-
mines whether two MOs can fit into the
same MI without conflicting over a hard-
ware resource.

Many of the optimization techniques of
conventional compilers are applicable to
microprograms--which is not surprising,
since a sequence of MOs strongly resembles
a conventional machine language program
[KLEI71]. These techniques consist primar-
ily of code transformations that reduce the
number or the execution time of MOs in
sequential form. For the rest of our discus-
sion we assume that any code transforma-
tions have already been applied.

Sometimes compaction is termed hori-
zontal optimization, but this is misleading
because conventional compiler optimiza-
tion is different from compaction and be-
cause compaction can reduce micropro-
gram size and execution time without nec-
essarily minimizing them. Horizontal im-
provement would be a more accurate term.

The Minimum Manhole Shifts Analogy

The reader can gain an appreciation for
some of the issues involved by considering
the following analogy, in which the sched-
uling problems of an underground con~struc-
tion project are compared to those of local

Data Dependency
Analysis

(BuildDDG)
i

Conflict
Analysis

(FormCls)

used by compaction algorithms.
in most of the approaches.

microcode compaction. The appropriate
compaction term is placed in parentheses
following discussion in the applicable anal.
ogy.

Both compaction and this analogy are
examples of job shop scheduling problems
[COFF76]. Compaction also bears a direct
resemblance to the processor scheduling
problem [GoNz77].

The Analogy

The foreman of a crew working in a man-
hole has a big job to do. The job entails a
large number of specific tasks, but there is
no shortage of workers. There is, however,
a limited amount of space in the manhole
and a limited number of tools. The fore-
man's problem is how to perform a given
job in the minimum number of shifts.

The analogy thus far:

The manhole: an MI or a control store
word.

The shift: one MI cycle.
The job: an SLM.
The task and its associated worker: an MO.
The tool: a processor's operational unit

(ALU, BUS, etc.)

Some workers' tasks depend on the com-
pletion of tasks by other workers. The
foreman must make a list of which tasks
depend on which other tasks and not send
a worker down into the manhole before the
necessary prerequisite tasks have been
completed (data dependency).

Assume for now that a worker's task al-
ways takes exactly one shift to complete
(monophase MI). Thus a worker depend-

Computing Surveys, VoL 12, No. 3, September 1980

266 , D. Landskov, S. Davidson, B. Shriver, P. W. Mailett

ing o n the job done by another should not
go into the manhole until the shift ~ r
that of the first worker. Of course, the tasks
of twoworke r s do not~always involve a
dependency. I f this is the case, they can go
down into the manhole together, assuming
there are no other problems between them
(data independence).

When can workers with independent
tasks not be sent down into the manhole
together? There are two possibilities. First,
they may require the same tool to do their
jobs. If there is only one such tool, one
worker must wait for the next shift (re-
source unit conflict). Second, the two work-
ers may not fit into the manhole together.
This can happen if the two workers must
work in the same place (at an exposed water
pipe, for instance) in the manhole (mi-
crooperation field conflict).

Now, w h a t i f the assumption that each
worker needs an entire shift is unrealistic?
Suppose that some workers need only part
of a shift to perform their .t~ks (polyphase
MIs). A union rule states that a worker
must stay in the manhole during the entire
eight-hour shift, but also that a worker may
be idle some of that time. Consider two
workers with independent tasks who need
the same tool.• I f they can work at separate
times, one can use the tool for the first few
hours, the other, for the remaining :hours.
Thus two workers who need the same tool
during different par t s of the shift can be
sent into the manhole together (resource
unit compatibility). They still must fit to-
gether in the manhole, however (mieroop-
eration field compatibility).

Suppose worker 2's task can only be per-
formed after the completion of worker l 's
task. If worker 1 starts in the morning and
takes two hours to finish and worker 2
needs four hours, they can be sent into the
manhole together, worker 2 waiting until
worker 1 is finished. Thus, assuming that
the workers can fit together in the manhole,
they can~ be sent down together (weakly
dependent MOs):

Now, let worker 3 perform a delicate task,
such as cleaning a joint in preparation for
welding. Worker 4 does the welding. If the
cleaned joint is left overnight, it gets dirty
again, and the job must be redone. There-
fore worker 4 must be sent into the manhole

on the same shift as worker 3 (coupled
MOs). The foreman decides to simplify the
analysis of task dependencies by consider-
ing two or more inseparable tasks as one
task with multiple workers (Me bundles).

Some tools may be multifunctional. A
drill can be used for drilling or modified and
used for polishing, but a polisher can be
used only for polishing. If worker 5 needs a
drill and worker 6 a polisher, worker 6
should be given the polisher, not the drill/
polisher. The foreman should tell the work-
ers which tools to use, thus eliminating this
kind of conflict (versions of resource units).
Similarly, ff worker 7 can work either in a
corner or by a wall (needing access to pipes,
say), and worker 8 can work only on a
junction box in a corner, worker 7 should
be told to work by a wall (versions of mi-
crooperation fields).

These are some of the issues the foreman
must contend with when attempting to
minimize the number of shifts required to
complete a job.

The manhole analogy makes the sched-
uling nature of the local compaction prob-
lem clear. The terms in parentheses are
explained in the appropriate sections of this
paper. The reader should refer to this anal-
ogy when studying these terms.

How This Paper Is Organized

Many of the sections in this paper are ex-
planations of algorithms. Although the de-
tails of an algorithm can be skipped without
a serious loss of understanding of subse-
quent sections, it is crucial to understand
the problem that each algorithm is designed
to solve.

Section 1 analyzes the data dependency
problem and presents an algorithm for
building a data dependency graph from an
SLM in sequential form. Section 2 explains
a model of processor behavior and shows
how it can be used to detect conflicts in
resource usage. Section 3 examines an al-
gorithm that uses this model to form mi-
croinstructions. Finally, Section 4 presents
examples from each of the four classes of
compaction algorithms and discusses the
computational complexity of each class.

Little or no prior knowledge of micropro-

Computing SurVeys, Vol.12, No. 3, Sei~ember 1980

• i :

L o c a l M i c r o c o d e C o m p a c t i o n T e c h n i q u e s , 267

gramming is needed in order to understand
this article.

1. DATA DEPENDENCY ANALYSIS

Data dependency analysis is the first step
performed in the local compaction process.
It is based on an examination of the input
and output resources of each microopera-
tion.

1.1 The Definition of Data Dependency

Most of the microoperations of a given ma-
chine operate on registers . A register
whose value is used by an MO is called an
inpu t storage resource or an input operand.
Similarly, a register whose value is changed
by an MO is called an ou tpu t storage re-
source or an output operand. ("Source" is
often used instead of "input" and "sink" or
"destination" instead of "output.")

As long as the number of variables used
in the entire microprogram (not just one
SLM) does not exceed the number of reg-
isters available, a register is essentially a
variable. Assume for now that this is the
case; the problem of reallocating registers
is discussed in Section 4.6.

Given an SLM to be compacted, the final
list of MIs must be "semantically equiva-
lent" to the SLM in the sense that both
must produce the same results when given
the same input values. If they are not se-
mantically equivalent, data integrity has
been violated. Some of the MOs cannot
change their order of execution without
producing different answers. In particular,
the order of two MOs cannot be changed if
they satisfy the following definition.

Def in i t ion . Two MOs, moi and moj,
have a data interact ion if they satisfy any
of the following conditions (assuming that
moi precedes moj in the original SLM):

(1) An output resource of moi is also an
input resource of moj (if moj were first,
it would have an old value in its input
resource, one that should have been
updated by moi but was not).

(2) An input resource of moi is also an
output resource of moj (if moj were first,
it would be able to change the value
that moi was expecting as input before
moi had a chance to use it).

(3) An output resource of moi is also an
output resource of moj (if moy were first,
moi would be able to overwrite moj 's
output value, when m o f s value is the
one that should remain after both MOs
are finished).

The definition of data interaction can be
applied to any two MOs without reference
to their order in the original SLM. Section
2 presents a representation for the input
and output resources of MOs that allows
data interaction to be tested by examining
set intersections.

The remainder of our development of
data dependency analysis rests on the fol-
lowing assertion.

A compacted list of MIs will be semanti-
cally equivalent to its original SLM if, for
every two MOs in the MI list that have
a data interaction, the MO occurring ear-
lier in the SLM finishes with each of the
resources causing the data interaction be-
fore the later MO starts to use it.

Several definitions are based on this as-
sertion, as shown in the following.

Def in i t ion . Given two MOs, moi and
moj, where moi precedes moj in the SLM,
then these MOs are o rde r p re se rv ing if
their execution in the same MI obeys the
following rule (assume it is otherwise pos-
sible): For each resource causing a data
interaction between them, moi finishes with
that resource before moj starts to use it.

If two MOs are order preserving, they
can be in the same MI without violating
data integrity. If an MO is order preserving
with respect to every MO in an MI, it is
order preserving with respect to that MI.

The next definition defines a partial or-
der over the MOs.

Def in i t ion . Given two MOs, moi and
moj, where moi precedes moj in the original
SLM, moj is d i rec t ly d a t a dependen t on
moi {written moi ddd moj) if the two MOs
have a data interaction and if there is no
sequence of MOs, mokl, rook2 , mok , , n
-- 1, such that moi ddd mokl, mokl ddd
r o O k 2 roOk(n-l) ddd mokn, mOkn ddd moj.

The second part of the definition ensures
that two directly data-dependent MOs will

Computing Surwyo, Vol. 12, I ~ 3, September 1980

268

have no "chain" of directly data-dependent
MOs between them.

Data dependency is the transitive closure
of the direct data dependency relation.

Definition. Given two MOs, moi and
moi, mo~ is data dependent on mo~ (writ-
t e n mo~ dd moj) if

moi ddd mo#

or if there exists an Me , rook, such that

moi ddd rook and rook dd moj.

If mo~ dd moj, then moj cannot execute
before moi without violating data integrity.
Usually they cannot execute in the same
MI either; this situation is discussed in the
next section. Two MOs that are not data
dependent are said to be d a t a indepen-
dent . It should be clear that data indepen-
dence implies order preservation.

Suppose a list of MIs is being constructed
from an SLM and the MOs in the SLM are
being considered one at a time. The data
dependency concept is used to determine
whether adding a particular M e to a par-
ticular MI in the list will violate data integ-
rity. If the answer is no, the M e is said to
be d a t a ava i lab le with respect to that MI.
Data availability is discussed more formally
in the next section.

The direct data dependency relation de-
fines a partial order over the MOs of an
SLM. The representation of this ordering
in graph form is called a d a t a dependency
g r a p h (DDG). Each node on a DDG, node
i say, corresponds to a unique MO in the
SLM, moi. If there is a link from i to j on
the graph, then mo~ ddd moj. The definition
of direct data dependency ensures that this
link is the only path in the graph from i to
j. Figure 4 shows a simple DDG where mol

• D. Landskov , S. Davidson, B. Shriver, P. W. Mal l e t t

(1)
/

(2)

(3)
FIOUBE 4. A data dependency graph.
Nodes I and 3 cannot be linked.

ddd mo2 and mo2 ddd too3. There cannot
be a link between node 1 and node 3 be-
cause they are already linked indirectly.

Many compaction algorithms use a DDG
of the SLM as input (see Section 4). A well-
designed microcode compilation system
might have the code generator produce the
MOs in graph form. Otherwise, the first
step of compaction is to form a DDG from
the SLM.

1.2 Extending the Data Dependency
Concept

There are several machine features that
can be incorporated into data dependency
analysis.

1.2.1 Finishing with a Resource Before the
End of a Cycle

Sometimes an M e does not affect machine
resources during the entire time that the
machine allows an MI to execute (i.e., the
instruction cycle time). In Section 2, a no-
tation for specifying the parts of an MI
cycle in which an M e executes is devel-
oped. If mo~ and moi are in the same MI,
and if moi finishes executing before moj
begins, then data integrity is preserved even
i f me# is data dependent on moi. This mo-
tivates the following definition.

Definit ion. Given two MOs, moi and
moj, then moj is w e a k l y d e p e n d e n t on moi
(moi w d moj) i f moj is directly data depen-
dent on moi, and if for every resource caus-
ing a data interaction between them, moi
finishes with that resource before me~ starts
to use it.

Clearly, taking advantage of weak de-
pendencies makes compactions with fewer
MIs possible, since two MOs related by a
weak dependency may be able to fit into
the same MI. In DASO76, the term "condi-
tionally disjoint" is almost a synonym for
weakly dependent (the difference in mean-
ing arises from model differences and is not
significant). If moi ddd moj, and it is known
that moi is not weakly dependent on mo~,
then moi is strongly dependent on mo~
(moi sd moy). If MOs are placed in a list of
MIs so that the MOs are order preserving,

mo~ sd moj implies mo~ < moj
mo~ wd moj implies mo~ <_ me~

The weak dependency concept allows a
more precise analysis of some of the M e

Computing Surveys, Vol. 12, I'4o. 3, September L980

Local Microcode Compaction Techniques • 269

relationships. One conclusion that can be
drawn is

If two MOs are data independent, or if
one is weakly dependent on the other,
then they are order preserving.

These are the only two conditions consid-
ered here which allow two MOs to fit into
the same MI and still preserve data integ-
rity.

The term d a t a avai lable applies when
a list of MIs is considered instead of just an
individual MI. We observe that

Given an SLM of MOs, and a list of MIs
constructed from some of these MOs, moi
is called data available with respect to
mij if

(1) every MO in the SLM on which moi
is data dependent appears in an MI
which is above mij in the list, or ap-
pears in mij itself, and

(2) moi is not strongly dependent on any
MO in mij.

Item 2 is a rewording of order preservation.
Notice that this definition applies even if
mi~ is empty, or if the list of MIs has no
other elements.

•.2.2 Transitory-Data Resources

One particular kind of weak dependency
has a special importance. The example in
Figure 5 depicts an MI sequence in which
mol, too2, and mo3 combine to take the data
stored in register A1 and move (gate) it
through latches 1 and 2 to register A2.

Registers A1 and A2 are examples of
s ta t ic resources. A static storage resource
is one whose contents are maintained in-
definitely until explicitly overwritten by the
execution of an MO. A transitory-data
storage resource is any storage resource
that is not static, that is, one whose con-
tents can become undefined at the termi-
nation of an MI in which it has been given
a value. Latches are examples of transitory-
data resources.

Two MOs are said to be d i rec t ly cou-
pled if one of them passes data to the other
through a transitory-data resource. Two
MOs are said to be coupled if a sequence
of MOs exists such that one of the two MOs

mo~: Input ffi A1, Output - Latchl
i (MOs activating devices that use

the contents of Latch1)
mo2". Input ffi Latch1, Output ~ Latch2

: (MOs activating devices that use
the contents of Latch 2)

mo3: Input ffi Latch2, Output ffi A2

FIGURE 5. MOs coupled through
transitory-data resources.

is the first element of the sequence, the
other is _the last, and each element of the
sequence is directly coupled to its adjacent
elements. Coupled MOs must be placed in
the same MI to work properly. Coupling
can occur in a variety of microprogram
instruction sets [AGRA76, SHRI73].

It is the authors' experience that the only
way to accommodate coupling in the com-
paction algorithms without causing serious
confusion is to incorporate coupling into
the definitions of the MO-to-M0 relation-
ships. This can be done using the concept
of bundling.

Definition. A mic roope ra t ion bund le
(MB) is a set of MOs, all of which are
coupled to one another.

Thus every MO in an MB must go into
the same MI because of the nature of tran-
sitory-data resources.

The SLM is changed from a list of MOs
to a list of MBs by putting coupled MOs
into the same MB and by putting each
uncoupled MO into its own MB. All of the
relations over MOs can be defined over
MBs in a straightforward manner. For ex-
ample, mbj is data dependent on mbi (mbi
dd mbj) if there exists an moi in mbi and an
moj in mbj such that moi dd moj.

After the MB relationships are defined,
the compaction algorithms can operate
with MBs just as they previously operated
with MOs. The nodes of a D D G are now
MBs, and compaction algorithms change
an SLM of MBs into a list of MIs. An MI
is now a set of MBs.

For the rest of this paper we discuss
compaction in terms of MBs. When relating
this paper to other papers that do not dis-
cuss coupling, the reader may substitute
the word microoperation for microopera-
tion bundle.

Computing Surveys, Voi. 12, No. 3, September 1980

270

1.2.3 Multicycle Operations

In many mach ines there are microopera-
tions which need more than one instruction
cycle to exJ~cute. Amain memory reference
is a common example of such a multicyc!e
operation. An MB which is data dependent
on an MB containing a multicycle operation
must be d e l a y e d the proper number of
cycles following the multicycle MI's start-
up. This is easily accomplished in data de-
pendency analysis by using d u m m y mi-
crooperation bundles . An operation re-
quiring n cycles to execute is represented
by a sequence of n MBs, each one data
dependent on the previous MB in the se-
quence. The first MB has all Of the input
and output resources of the operation; the
others are dummies which use the delayed
output resources of the operation for both
input and output. Figure 6 shows an ex-
ample DDG where mbl has a three-cycle
operation. Nodes la and lb represent
dummy MBs.

(1)
I

(l a)
(2) I "

k (l b)
I

(3)

FIGURe. 6. A data dependency
graph with a three-cycle mi-
crooperation.

• D. Landskov, S. Davidson, B. Shriver, P. W. Mallett

Although dummy MBs do not corre-
spond to actual microoperations, an MI
containing only dummy MBs has to be
created as a no-operation (NOOP). Such a
NOOP indicates that the machine has noth-
ing else to do while waiting for the comple-
tion of a multicycle operation. Global anal-
ysis can eliminate NOOPs at the end of an
SLM by moving the corresponding dummy
MBs to all the SLMs that can execute
immediately after this one [MALL78].

1.3 Forming a Data Dependency Graph

Few of the compaction articles referenced
by this paper define an algorithm for con-
structing a data dependency graph from a
list of MBs (or MOs). Although algorithms
of this kind exist, they are not widely known
and have not been explained in terms of the

mi'crocode compaction problem. Thus the
following algorithm should be of general
interest.

The algori thm presented (BuildDDG)
cor~structs t h e g r a p h o n e MB at a time,
starting with the first MB in the list and
proceeding through the list in sequential
order. Each MB is added as a new node to
the graph formed by the MB's predecessors
in the list. Then the graph is searched to
find which nodes should be linked to this
new node. We say that we are adding the
"current MB" to the "current graph."

The directed graph is defined in a con-
ventional way. "Node A is a parent of node
B" means that "B is directly data depen-
dent on A"; we write node A above node B
with a link, or line, connecting them. The
nodes without parents are the roots , and
are drawn at the top of the graph. The
nodes with no children are the leaves . A
path is a sequence of distinct nodes, each
of which is a parent to the next node in the
sequence. Node A is an a n c e s t o r of node
B if a path exists from A to B.

While adding the current MB to the
graph, we test an MB already in the graph
(a graph MB) to see if the current MB is
data dependent on it. Whenever the test
indicates a data dependency, a link is
formed. Each graph MB needs to be tested
once at most when adding the current MB.
The data interaction part of the test can be
performed by looking at only the two MBs
involved. However the definition of direct
data dependency tells us when data inter-
action does not imply direct data depend-
ency. We can restate this part of the defi-
nition as follows:

If the cu r r en t microoperation bundle,
mbk, is directly data dependent on a mi-
crooperation bundle, mbj, then mbk can-
not bed i r ec t l y data dependent on an
ancestor of mbi.

It immediately follows that a graph-MB
should not be linked if it is an ancestor of
the current MB. Such links are not formed,
and the unnecessary testing of such MBs
for data interaction is avoided by observing
the following rule:

Data lnteraction Testing Rule. A graph
MB is tested for data interaction with the
current MB if and only if all of the graph

Computing Surv~s, Vol. 12, No. 3, September 1080

Direct Data Dependencies:

Current Current Compare
Graph MB to

(1)
/

(2)

(I) (3)
/

(2)

(I) (3)
/ \

(2) (4)

(I) (3)
/ \

(2) (4)
I

(5)

w

2
I

4

2
I

3

2

4

3

2

Local Microcode Compaction Techn~ues

i i l l i

I ddd 2, I ddd 6, 4 ddd 5.
I ddd 4, 3 ddd 6,

i

t~ext
ddd? Action

no

no

no
yes

no

no

yes

no

no

5 no
4 no

I yes

3 yes

Add node for 3;
Test next leaf (2).

Check 2's parents.
(No parent); Next MB.

Add node for 4;
Test next leaf (2).

Check 2's parents.
Form link from I to 4;

Test next leaf (3).
(No parent); Next MB.

Add node for 5;
Test next leaf (2).

(2's parent has untested
child, 4);
Test next leaf (4).

Form link from 4 to 5;
Test next leaf (3).

(No parent); t~ext MB.

Add node for 6;
Test next leaf (2).

(2's parent has untested
child, 4);
Test next leaf (5).

Check 5's parents.
Check 4's parents (1's

children now verified)
Form link from I to 6;

Test next leaf (3).
Form link from 3 to 6;

Stop (out of gBs).

271

(I) (3)

/ 1 \ /
(2) (4) (5)

I
(5)

Resulting
Data Dependency Graph

FIGURE 7. Example of formation of a data dependency graph.

MB's children are verified nonancestors of
the current MB.

By following this rule a positive test for
data interaction implies direct data depend-
ency.

Now an algorithm that searches for graph
nodes on which the current MB is directly
data dependent can be specified. A search

progresses upward from each leaf, since
each leaf automatically satisfies the testing
rule. If the test of an MB for data interac-
tion is positive, then a link is formed to the
current MB. If the test is negative, then
that MB has been verified as a nonancestor
of the current MB. Each of its parents is
informed that another child has been veri-

Computing Surveys, Vol. 12, No. 3, September 1980

272 • D . Landskov, S. Davidson, B. Shriver, P. W. Mallett

fled. Each parent is also checked to see if it
now satisfies the testing rule. If it does, then
the parent is tested..Searching ends when
there are no more MBs to be tested.

Figure 7 shows the formation of a data
dependency graph from an SLM of six
MBs. The direct data dependencies which
should be detected by the algorithm are
listed at the top of the illustration. The
algorithm starts by placing mbl in the
graph. Then mb2 becomes the current MB.
Since mbl is a leaf of the current graph, it
is tested against mb2 for data interaction.
The test is positive and a link is formed. No
more MBs remain to be tested, so mb~
becomes the new current MB. Refer to
Figure 7 for a trace of the rest of the exe-
cution.

The resulting data dependency graph
shows that it is not possible for mb5 to be
directly data dependent on mb~ (since they
are indirectly linked on the graph), even
though there may be a data interaction
between them. The algorithm did not per-
form the needless test for this data inter-
action. Notice also that the algorithm
searches parents (and leaves) from left to
right. The order in which parents are
searched makes no difference. The searches
could proceed in parallel.

No reference has been made yet to the
data structure used to represent the graph.
Any structure capable of representing a
directed graph will work. An adjacency ma-
trix where DDG~ -= true means mbi ddd
mb~ is a reasonable choice.

2. DESCRIBING THE HOST MACHINE

Section I examined the ordering that must
be preserved while placing microoperation
bundles into microinstructions. There re-
mains the question of the restrictions im-
posed by the host machine itself. Two MBs
cannot be placed in the same MI if they
both need exclusive control over the same

• resource at the same time. Such a situation
is called a conflict. For example, usually
two MBs cannot use the same ALU at the
same time.

To be able to detect conflicts, a compac-
tion algorithm must operate within the
framework of a machine model. More pre-
cisely, this framework should be a model of
a machine control word, since control word

Comp,t~S,rvey~VoLla, No.a, S e l ~ " 19S0

behavior defines the legality of an MI. This
model should have the following properties.

Machine independence. The model
should be applicable to a variety of physical
machineL Table-driven models can isolate
machine-dependent information, such as
the host instruction set or the number of
resources of a given type. In any case the
data structures used by the compaction
algorithms should be general.

Manageability.The data structures used
by the model should support clear, well.
structured design. Appropriate primitives
should be defined and used in the code. The
model should not contain hardware details
unnecessary for the execution of the algo-
rithms. Efficiency should also be consid-
ered, since some potential uses of the model
involve computations of exponential com-
plexity.

Completeness. The model must be able
to represent real-world machines. This im-
plies that some machine features ignored in
the past will have to be supported by the
model. Designing a simple model and add-
ing extensions later can have disastrous
effects on its manageability.

In the following sections we present a
model which is a synthesis of most of the
models in the literature [I~EI74, DAsQ76,
DEW176, MALL78, RAMA74, YAU74]. This
model demonstrates that the above goals
can be (and have been) met. Several fea-
tures of this model contribute to its com-
pleteness. One previously mentioned is the
ability to represent microoperatious that
are not active throughout an entire MI
cycle. A machine that supports such MOs
is said to have polyphase timing. Many
compaction algorithms deal only with
monophase timing [DEWI76, RAMA74,
YAU74]. Another important feature of the
model we are presenting is the ability to
delay resource binding until MIs are
formed, that is, until the compaction pro-
cess. Some models do this for registers only
[DEWI76]. The binding concept allows an
MO to have a choice of other kinds of
resources as well.

This model is not claimed to be the best
choice for all compaction problems but is
offered to demonstrate the feasibility of
describing a variety of realistic machine
features. Although coding details are not

Local Microcode Compaction Tedb-dques • 273

m__oo[i] : <ADD, {A, B}, Latchl, ADDERI, Phase2, Field1>

explanation: Latchl <- A + B;
Adder ADDERI is used to add the contents of its two
input registers A and B. The results are placed in the
register Latchl. Execution occurs during clock phase
2. The encoding for the MO is contained in MO field
Fieldl. The name of the MO is "ADD."

m_~o[j] : <MOVE, A, B, BUS, PhaseO, Field2>

explanation: B <- A;
Using the bus BUS, data is gated from register A to B.
Execution is at clock phase PhaseO and the MO's
encoding is in MO field Field2.

mo[k] : <JUMP, empty, empty, CSAU, PhaseS,
{Field5, Field6:"9"}>

explanation: Unconditional Branch;
The Control Store Address Unit (CSAU) uses the
immediate data (9) contained in MO field Field6 as
the target address for the branch. Execution occurs at
Phase5, and Field5 contains the encoding of the MO.
Ho input or output resources are required.

i

m~o[l] = <SHIFT, ShiftA, ShiftA, SHIFTER, Phase3, Field3>

explanation: ShiftA <- SHIFTER(ShiftA);
The shifter SHIFTER is used to shift the contents of
register ShiftA. Execution is during clock phase
Phase3. The encoding occupies MO field Field3.

FIGURE 8. Examples of MO tuple representation.

presented here, implementations of the fea-
tures do exist [MALL78, WOOD78, FISH79].

2.1 Microoperation Tuples

The MO is the most primitive activity ac-
commodated in our model. An MB is rep-
resented as a set of MOs. The semantics of
an MO are represented by a six-tuple,
(name, I, O, U, T, F), where the tuple
elements are

(1) name--an identification of the MO to
be performed,

(2) I - - the set of all storage resources whose
contents are required by the MO as
input,

(3) O-- the set of all storage resources into
which the MO places output,

(4) U-- the set of all functional units re-

quired by the MO while the MO is
executing,

(5) T- - the set of processor clock phases
required for MO execution, and

(6) F-- the set of all microinstruction fields
required by the MO (they contain the
encoding of the MO and possibly im-
mediate data).

Elements 2 through 6 are known as tuple
sets. Figure 8 shows examples of four MOs
with their tuple sets enumerated. Note that
the "{" and "}" braces are not written
around singleton sets. An MI is a group of
MOs contained in one word of control store.
The execution time for one MI is called the
instruction cycle t ime and may consist of
several subcycles cal led clock phases. A
microprogram is an ordered list of MOs or

274 • D. Landskov, S. Davidson, B. Shriver, P. W. Mallett

MIs which real i~ the logic of a particular " ular binding upon all Orlists within a tuple

The six-tuple specification of M0 sen;an-
tics is a machine-independent representa-
tion o f a mic/ooperation: When t h e MO s
and resources of a particular machine are
enumerated in this format, the representa-
tion becomes tailored to that machine. The
tuple is used by a code compaction algo-
rithm to detect conflicts and analyze re-
source usage between MOs.

The definition of the individual sets of
the six-tuple, as given in Figure 8, is not
complete. We extend it to take into account
r e s o u r c e al locat ion. The tuple se ts are
considered to be b o u n d or u n b o u n d with
respect to their allocated processor re-
sources. An unbound set contains, as ele-
ments, the enumeration of all possible re-
sources that can be allocated to the set. A
bound set contains, as elements, those re-
sources that were actually assigned to the
set. Consider the following unbound Unit
set (Uset).

Ui ffi (ALU1 or ALU2}

This set is characterized as unbound by its
"or" operator, which indicates an Orlist .
The Orlist signifies that at some point be-
fore the MO can be executed, achoios must
be made as to which hardware resource will
be assigned to beused by the MO. An Orlist
in which the assignments have been made
(i.e., the Orlist has only one item in the list)
is a v e r s i o n o f the set. For example, bind-
ing the foregoing User generates two bound
Orlists and thus two versions of the Uset:

U ~ e r l = {ALUI) U ~ e r 2 = (ALU2)

Another resource allocation grouping is
the Andlist , which groups one or more
Orlists in an unbound or bound tuple set.
Consider an example o f an unbound Uset:

U j = ((ALU1 or ALU2),
(ALU3 or ALU4))

The Andlist indicates that one unit must be
assigned from each Orlist. One version of
Uj is

: UjVer l ffi (ALU1, ALU3)

Tuple sets are either bound or unbound
sets. Resource allocation imposes a partic-

The elements of a field set (Fset) specify
the MI fields used for storage of the encod-
ings of the MOs and immediate (literal)
data. Immediate data are data that an MO

n e e d s available ~within the same MI. An
example of an Fset is

Fi = {Field1 or Field2)

An MO with this field set would require one
of the two fields, "Field1" or "Field2," to
store the bit encoding of the MO. Next we
have an MO that, in addition to a control
field, requires that "Field5" contain the
decimal constant "8" to be used as imme-
diate data. The Fset of such an MO might
look like

Fj = (Fieldl, Field5 ffi "8")

2.2 Relationships Between Tuples

Using the tuple set model to detect resource
conflicts is done primarily by testing for
non_null set intersections. Consider the fol-
lowing definitions.

Two MOs are un i t compa t ib l e if their
Usets are disjoint or if their Usets are not
disjoint but their Tsets are disjoint.

This definition simply states that a unit
cannot be used by two different MOs at the
same time.

Two MOs are field compa t ib l e if their
Fsets are disjoint or if all of the common
elements of their Fsets contain the'same
value.

Since the use of a field lasts an entire in-
struction cycle, timing sets need not be
considered. The last clause of the definition
allows two MOs to share the same literal
value. For example, two field-compatible
MOs might both need a "5" in Field9. Not
only does our model allow two MOs to
share a literal, there is no way to prevent
them from sharing one. With most ma-
chines this would cause problems. An ex-
tremely flexible representation of field se-
mantics can be found in DEW176.

For the use of registers to be conflict-free,
the same register cannot be used by two
MOs at the same time, unless both MOs

Comp~ s,~ey~ yol. ~, No. s, S~p~b~ 19So

Local Microcode Compaction Techniques • 275

are reading. But this is just the negation of
data interaction, with a timing considera-
tion added:

Two MOs are da t a compat ib le if there
is no data interaction between them, or
if their Tsets are disjoint.

Notice that this definition applies to two
dependent MOs which execute at separate
times in the MI cycle, but in the wrong
order. Thus data compatibility does not
imply order preservation. It is easy to ver-
ify, however, that if two MOs are order
preserving, they are also data compatible.

If two MOs are unit compatible, field
compatible, and data compatible, then they
are said to be resource compatible . In
this model, resource compatible implies
conflict-free.

Two MOs which are order preserving and
conflict-free are defined to be paral lel .
Parallel MOs can be placed in the same MI.
During the construction of a list of MIs
from an SLM, an MO which is data avail-
able to an MI in the list and is also resource
compatible with that MI is said to be c o m o
pac tab le into that MI. The word compos-
able has been used synonymously with
compactable.

3. FORMING COMPLETE INSTRUCTIONS

An algorithm for forming complete instruc-
tions (CIs) examines a set of microopera-
tion bundles and constructs conflict-free
microinstructions from them. The resource
conflicts are detected using a control word
model such as the one discussed in Section
2. An MI is complete with respect to a set
of MBs if no other members of the set can
be added to the MI; otherwise it is incom-
plete. An algorithm that forms complete
instructions is used in some form by all of
the compaction algorithms in Section 4 ex-
cept the linear algorithm.

A particular algorithm (FormCIs) is pre-
sented in the following two subsections.
FormCIs builds combinations of MBs from
the input set by examining one MB at a
time. Each MB is alternately considered as
included in or excluded from the combina-
tion. A combination can be rejected be-
cause of (1) resource conflict or (2) incom-
pleteness.

As seen in Section 3.2 the algorithm pre-
sented here is not the only possible ap-
proach, but it is consistent with our model,
and a good demonstration of the model's
use.

3.1 The FormCIs Algorithm

FormCIs is applied to a set of data-available
MBs, which are called the Dset. Since the
MBs are known to be data available, only
units and fields need to be checked for
conflicts. However weakly dependent chil-
dren of MBs in the Dset may be added to
an MI if their parents are added--as ex-
plained in the following.

Given a Dset, FormCIs generates all pos-
sible complete instructions from it. Each
MB in the]:)set can be either included in or
excluded from the instruction currently
being generated. If its inclusion or exclusion
is not yet decided, the MB is said to be a
r e m a i n i n g MB. The set of all remaining
MBs is called the r e m a i n i n g Dset
(RDset). An instruction for which remain-
ing MBs exist is said to be a pa r t i a l in-
s t ruct ion. An instruction under construc-
tion is considered a partial instruction until
the disposition of all MBs has been decided.

We wish to detect when a partial instruc-
tion is incomplete. A useful concept is that
of the subins t ruc t ion . A partial instruc-
tion is a subinstruction to an instruction if
the union of the partial instruction and all
MBs that can potentially be added is a
subset of the instruction. The only MBs
that can be added ar e the remaining MBs,
unless adding weakly dependent MBs is
allowed. This possibility is discussed in Sec-
tion 3.1.2.

As an example of the subinstruction re-
lation, suppose that

I1 ffi {1, 2, 4)

is a microinstruction and that

PI1 = {1}

is a partial instruction associated with the
remaining Dset

RDset ffi {4}

In this case, PI1 is a subinstruction to I1
because the union of PI1 and RDset, (1, 4},
is a subset of I1.

C0mputing Surveys, VoL 12jNo. 3,September 1980
i

276 • D. Landslwv, S. Davidson, B. Shriver, P. W. MaUett

A pineal instruction that is a sub'mstruc-
tion to a /previously- generated ~, c o / ~ e t e
instruc~n wa! he iacoaqdete under any
disposition of its r e m ~ MB~A pa/h'al
instrUction that is not a subinstruction to
any known complete instruction is said to
be potent ial ly oomplete, ~ - •

The set of compete instructions is
formed by repeatedly applying the proce-
dure outlined in the following.

FormCIs
(1) Let I represent the current partial in-

struction. I is initially empty and the
remaining]:)set is initially equal to the
Dset.

(2) Pick an MB from the remaining Dset.
Consider including this MBin I, possi-
bly in more than one version, If it does
not conflict with an MB already in I,
reapply this procedure with this MB in
I (once for each version)J

(3) Then consider excluding the MB from
I. If this does not make I a subinstruc-
tion to an already found complete in-
struction, reapply this procedure with
this MB excluded from I.

(4) If the remaining Dset is, empty, select
I to be a generated instruction.

FormCIs generates all combinations of
the MBsin the Dset except those having
conflicts and thoSeknown to be incomplete.
Thus all complete instructions will begen-
erated. It is not immediately obvious that
each instruction is guaranteed to be com-
plete. This is, in fact, the case; the CI "purg-
ing extension" presented in Section 3.1.2
makes proving completeness trivial for the
fun a~orithm.

Besides conflict and incompletenebs,
there is one other case where a partial
instruction does not require exhaustive ex-
amination of its remaining Dset. Suppose
that a complete instruction has just been
generated and consider the last MB that
was excluded from this instruction (if any).
All MBs selected after the last excluded
MB were found conflict-free. Any other
disposition of these MBs could not possibly
lead to an instruction with a different MB
in it. Thus, whenever a complete instruc-
tion is generated, the examination of partial

~ t ruc t ion combinations backs up to the
last excluded node.

If desired, the rest of Section 3.1 can be
skipped on first reading.

3.1. i Introductory Example of FormCIs
Execution

The execution of the FormCIs algorithm
forms a tree. Each node on the tree corre-
sponds to an MB picked for inclusion or
exclusion. The first of these, an "include
node," is drawn as the name of the MB in
parentheses. The second, an "exclude
node," is drawn as the name of the MB in
square brackets surrounded by parenthe-
ses. The tree is referred to as a FormCIs
tree. An instance of a node is also repre-
sented numerically by two digits separated
by a decimal point. The first digit indicates
the vertical position of a node counting
ascending from 1. The second digit repre-
sents the horizontal position of a node
counting ascending from 1. The Check-
NextMB procedure, shown in a later dia-
gram, corresponds to a node on the tree.
The tree is created in depth-first, left-to-
right order. Notice in Figure 9 that the
partial instruction at a node is identified by
the path from the root to that node. In-
structions are written as a list of MBs de-
limited by commas. Excluded MBs are also
shown because they can be used in checking
completeness. The final instructions pro-
duced by this algorithm are a set of in-
cluded MBs.

Figure 9 is an introductory example of
t h e formation of complete instructions.
Suppose the Dset contains three MBs: 1, 2,
and 3. Furthermore, assume that 1 conflicts
with 2 (1 c 2) and that 1 conflicts with 3 (1
c 3). For this example, it is not important
to know what resources cause the conflicts.
We now examine the execution of the al-
gorithm, one tree node at a time.

First, MB 2 is picked arbitrarily and in-
cluded in I, the current partial instruction

• (node 1.1). Then MB 1 is picked for inclu-
sion in I, but 1 conflicts with 2, and so we
are finished with this node (node 2.1). Next
1 is considered as excluded from I (node
2.2). There are not yet any selected instruc-
tions to compare with I, so I is potentially
complete. Now MB 3 is picked and checked

Local Microcode Compaction TeclmblUes • 277

_ _

(2)
/

(I)
c2

\
([i])
/ b

(3) L
FormCIs Tree: - - \

([2])
/ \

(i) ([I])
/ \ i

(3) ([3])
ci i

Selectedls

ii {2, [I], 3}

2 {[2], I, [3]}

MBs: 1, 2,

Conflicts: I c 2,
1 c 3.

Where: c - conflict,
i - incomplete,
b - backup.

Execution Trace:
Con-

Node MB flict? Dset
0 - - {1,2,3}
1.1 2 no {1,3}
2.1 I yes
2.2 [I] n 9 {3}
3.1 3 no {}
1.2 [2] no {1,3}
2.3 I no {3}
3.2 3 yes
3 3 [3] no {}

Remaining Partial Incom- Selected
Instruction plete? Instructs.
empty - {}
{2} no {}

{2,[I]} no {}
{2,[I],3} no {2,[I],3}
{[2]} no {2,[I],3}
{[2],I} no {2,[I],3}

{[2],I,[3]} no

2.4 [I] no {3} {[2],[I]}

{2,[I],3;
[2],I,[3]}

Comments About the Trace:

Node O:
Node 2. I :
NoOe 3. I :

Node 3.2:
Node 3.3:

1~ooe 2.4:

The remaining Dset is initially the same as Dset.
I conflicts with 2, so return to parent node.
remaining Dset empty, so add the current partial
instruction to the SelectedIs, then backup to the
first ancestral exclude node, which is Node 2.2.
3 conflicts with I, so return to parent node.
Select the current partial instruction. Since
the current node is an exclude node, there is no
backu~ to an exclude node. Return to parent node.
The partial instruction {[23,[I]} is a
subinstruction to the first selected instruction,
{2,[I],3}. Return to parent node.

FIGURE 9. Introductory example of forming complete instructions.

for inclusion in I. There is no conflict and
the remaining Dset is empty, so I ({2, [1],
3}) is selected (node 3.1). We back up to
the most recent exclude node, indicated by
the b next to node 2.2. Now we consider
excluding 2 (node 1.2). I ({ [2]}) is not a
subinstruction to the selected instruction
{2, [1], 3} since I might be able to contain
1. Next I is picked, found to have no conflict
with I, and added to I (node 2.3). Then 3 is
picked, but its inclusion conflicts with 1

(node 3.2). Excluding 3 does not cause I
({ [2], 1, [3] }) to be a subinstruction to {2,
[1], 3}, so I is selected (node 3.3). Since the
last node on the path is an exclude node,
there is n0 backup. The next node in the
normal order is [1], but the resulting I({[2],
[1]}) is found to be a subinstruction to the
first selected I ({2, [1], 3}). Thus I is incom-
plete relative to the first selected instruc-
tion (node 2.4). This completes the
FormCIs execution.

Computing Survey~Vol. i~ No, 3, September 1980

278 • D.~'Landskov, S. Davidson, B.

3.1.2 The Full ForrnGIs Algorithm

Accommodating unbound resources in the
proposed algo~ is straightforward. We
produce a version of an MB for each pos-
sible binding of its resott~es. Whenever an
MB is considered for inclusion, an include
node for each version is generated. How-
ever it now becomes possible for a new
selected instruction to "supersede" an old
one. In other words, an already selected
instruction might be a subinstmction to the
newly selected one; the new one cannot be
a subinstruction because such an'instruc-
tion fails the completeness test. The algoo
rithm discards superseded instructions. As
a consequence each instruction in the final
list of instructions is guaranteed to be com-
plete. (Recall that in Section 3.1 we stated
that every complete instruction is in the
list.)

We now redefine subinstruction to incor-
porate the concept of weak dependency.
First, we define the e x t e n d e d r e m a i n i n g
Dset. An MB is in the extended remaining
Dset if it is in the remaining Dset or if it is
below the remaining Dset in the graph and
each of its parents satisfies one of the fol-
lowing:

(1) the parent is above the original Dset in
the graph, or

(2) the parent is in the extended remaining
Dset and the MB is weakly dependent
on it.

Now we can say that a partial instrUction
is a subinstruction to an instruction if the
union of the partial instruction and its ex-
tended remaining Dset is a subset of the
instruction.

Alternatively, an analysis of subinstruc-
tion could be based on the excluded MBs
instead of the remaining Dset, but the al-
gorithm would operate in essentially the
same manner. The application of the ex-
tended algorithm in a simple example can
be seen m Figure 10. A flow diagram for the
full algorithm appears in Figure 11.

3.2 Alternative Approaches

List scheduling algorithms (Section 4.4)
consider only one possible complete in-
struction from each Dset. This allows a
corresponding simplification in the calcu-
lation of complete instructions [WooD78,

' " ' / ' ' V " '~ ' ~ ' " " ~ " ~ " •

Shriver, P. W. Mallett

FmH79]. The tree of MBs is collapsed into
a linear list of MBs. Each time a choice of
MBs is possible, only one of them is consid-
ered. A weighting function is applied to
make the choice.

There are two advantages to this ap-
proach. First, the computational complex-
ity of forming complete instructions is re-
duced from exponential to linear. This is
significant since sets of complete instruc-
tions are calculated many times during the
course of a compaction. Second, this algo-
ri thm is much easier to program. Since only
one instruction is being generated, there is
no need to do subinstruction analysis.

Another approach to forming complete
instructions has been developed by DeWitt
[DEWI76]. DeWitt's algorithm, AP-
PLYCWM, is significant because it gener-
ates all possible complete instructions yet
is computationally less complex than the
FormCIs algorithm of the previous section.
An execution tree generated by AP-
PLYCWM has fewer nodes than a FormCIs
tree for the same Dset.

APPLYCWM begins with an empty MI
and starts adding MBs one at a time, just
as FormCIs does. However no new node is
generated until a resource conflict actually
occurs. Thus one node can contain several
MBs. When a conflict occurs between two
MBs, two new nodes under the current
node are created. One contains the MBs in
the current node and one of the conflicting
MBs, and the other contains the current
node's MBs and the other conflicting MB.
Then APPLYCWM continues adding MBs
from the Dset to both of the new nodes.
This process continues until all the nodes
from the Dset have been used.

Since the execution tree for AP-
PLYCWM only branches if a new MB con-
flicts with the MBs already in a node, it will
be smaller than the tree for FormCIs, which
has multiple branches for every new MB.
However APPLYCWM cannot be used
with the model from Section 2, because it
makes no provision for handling different
Versions of the same MB.

It is not clear how APPLYCWM and the
model can be extended in order to work
together. The version concept could possi-
bly be modified to allow an individual re-
source to be bound without binding an en-
tire MO. Then APPLYCWM could be rood-

FormCIs Tree:

Local Microcode Compaction Techniques •

(IA) (IS)
/ \ / b

(2A) ([2]) (2A)
/ \ i / b

(3A) ([3]) (3A)

clA L l
SelectedIs

1 {IA; 2A; [3] }

2 {IB~ 2A; 3A}

Execution Trace:
Con-

Node MD
0 -- --

1.1 IA no
2.1 2A no
3.1 3A yes
3.2 [3] no
,2.~ [2] no
1 .2 IB no
2 .3 2A no
5 .3 3A no
i

MB: I, 2, 3

Versions: ~'IA 2A 3A
1 IB

Conflicts: IA c 3A.

DDG: (I) (2)
I wd
(3)

*-The indicated Selected
I is discarded because
it is a subinstruction
to the new Selected I

Remaining Partial Incom-
flict? Dset Instruction plete?

{1,2} empty -
{2} {IA} no
{3} {IA,2} no

{} {1A,2A,[3]} no
{} {IA,[2]} yes
{2} {IB} no
{3} {IB,2B} no
{} {IB,2A,3A} no

Selected Is

{}
[}
{}

{1A,2A,[3]}

{1A,2A,[3]}
{IA,2A,[3]}
{IB,2A,3A}

lCommen5s About the Trace:
iNodeO: The Dset is {1,2}. MB 3 is not data available.
INode2.1: Choosing MB 2 causes its wd descendant,

MB 3, to be added to the RemainingDset.
Node3.1: 3A conflicts with IA, so return to parent node.
Node3.2: The empty RemainingDset causes us to select the

current partial instruction. There is no backup
because the current node is an exclude node.

Node2.2: The partial instruction {IA,[2]}is a subinstruction
to the selected instruction {1A,2A,[3]} because
excluding 2 implies excluding 3 (since 2 wd 3).
Return to parent node.

Node3.3: While entering the current partial instruction, we
remove the previously selected instructions which
are subinstructions to it. We try to backup to the
first ancestral exclude node, and, since there
is not one, we are back at node 0 and are finished.

279

FmVRE 10. Example trace of the full FormCIs algorithm.

ified to bind resources in order to resolve a
conflict. Although final instructions might
still contain unbound resources, this pre-
sents no problem since an arbitrary binding
is sufficient at this point.

4. COMPACTION ALGORITHMS

All o f the microcode compact ion algorithms
t h a t have appea red as of this writing fall
into one of four categories: linear analysis,

critical path, branch and bound, and list
scheduling. Representative algorithms for
each of these categories are presented in
the following sections.

The operation of the compaction algo-
rithms is shown by a common example. The
data dependency graph and conflicts for
the example SLM are given in Figure 12.
This SLM has eight r~dcrooperation bun-
dles. MB 3 depends on MB 2, MB 4 on both

Comput~ ~rveys; VoL t$,No.~, September 1980

28O D. Landsko~ S. Davidson, B. Shriver, P. W. Mallett
I~" i i i I

CheckNextMB:

I £ Rez , la in lngDset i s empty t h e n :
A d d a copy o f I t o S e l e c t e d I s ;
Remove any S e l e c t e d l s t h a t a r e
subinstruetions t o I ;
Set BackUpToAnExcludedMB true;
Return.

t i

Pick and remove a MB from RemainingDset.
Add its data available wd successors.

t
i I i i

For each version of the MB:

If this version conflicts with a HB in I,
then Skip the rest of this box.

Add this version of HB to I.
Call Che~kNextMB (to consider all

possible ways of addinE MBs still in
RemalningDset).

Subtract this version of MB from I.
If BackUpToAnExcludedMB was set to true

dgring the call then Return.

[l

ii l [

t
.Subtract the wd successors t h a t were
added to Remainingbset.

t

I f addinE this MB to MBsNotInI implies
that I will be a subinstruction to one

: of ~electedIs then Skip the rest of
this box.

Add MB to MBsNotInAnI.
Call CheckNextMB.
Subtract FiB from MBsNotInl.
If BackUpToAnExcludedHB was set to true

durinE the call then Set it to false.
Subtract MB from MBNotInI.
~eturn.

i

F[GURI~ 11. Flow diagram of Fo~n~CIs algorithm.

MBs 1 and 3, both MBs 5 and 6 on MB 4,
and MB 8 on MB 7. There are three con-
flicts between MBs:. MB 2 with MB 7, MB
3 with MB 7, and. MB 5 with MB 6. For
this example _the type of conflict is unim-
portant. •

4 . 1 T h e L i n e a r A l g o r i t h m " "

The linear algorithm (Lin) is a modification
of that described by D~gupta and Tartar
[DAsG76, BAlZN78, DASG78, DASG79]. It is

Comp=~ s ~ . ~ voi ~t~k, ~ ~ ~mo

restructured to fit our model and also is
more efficient than their algorithm. Lin op-
erates on an SLM which is in the form of a
list of MBs. MBs from the SLM are added,
i n t h e order in which they appear on the
list, to an initially empty list of microin-
structions. For each MB in the SLM, an
attempt is first made to add the MB to an
existing MI, and if this fails, to a new MI
created to hold it. (The name "linear"
comes from the linear examination of the

• i ~ "~

Local Microcode Compaction Techniques • 281

(I) (2) (7)

(3) (8)
/

(4) 2 e 7
/ \ 3 e 7

(5) (6) 5 e 6
(a) (b)

FIGURE 12. Sample compaction problem. (a) Data
dependency graph. (b) MB conflicts.

original SLM and does not imply that the
algorithm executes in linear time.) We now
present the algorithm in more detail.

The search for an existing MI to which
the MB currently being examined can be
added begins with data dependency analy-
sis. Starting at the bottom of the MI list
and proceeding upward, examine each MI.
Continue the search above a microinstruc-
tion in the list if the MB under current
consideration is not data dependent on any
MB in that MI. If the current MB is data
dependent on an MB in the ith microin-
struction, the current MB cannot be placed
in any microinstruction earlier than i. It
can only be placed in the ith MI if it is
weakly dependent with every MB on which
it is data dependent. In other words, it can
be placed if it will not execute until these
MBs are finished. The object of this search
is to find the earliest (highest) microin-
struction in which the new MB can be
placed without violating the ordering im-
posed by the data dependencies in the
SLM. This MI is called the r ise l i m i t .

The next step in the search for an existing
MI is the examination of resource conflicts.
To be placed in a microinstruction, the
current MB must not conflict with any MB
already in that microinstruction. Assuming
that a rise limit i was found, search down-

ward in the list, starting with microinstruc-
tion i, for some microinstruction in which
the new MB can be placed. When such a
microinstruction is found, add the new MB.
If no such microinstruction is found, add
the new MB to the end of the microinstruc-
tion list, thus forming a new microinstruc-
tion containing only one MB.

If no rise limit was found, then the cur-
rent MB was not data dependent on any
MB in the microinstruction list, and the
MB can be added to any microinstruction
with which it has no conflicts. In this case
begin the downward search at the top of
the MI list. If there are no microinstruc-
tions to which the MB can be added with-
out conflict, use the MB to form a new
microinstruction at the top of all the other
microinstructions. Placing this MB at the
top will keep it from blocking any new MBs
that depend on it.

Figure 13 shows the algorithm at work
on the MBs of the example SLM. The first
MB processed is MB 1. Since the list of
MIs is initially empty, MB 1 is placed by
itself in MI 1. The next MB, MB 2, is not
data dependent on MB 1. It can therefore
be placed in MI I along with MB 1, assum-
ing no conflicts exist. Since MB 1 and MB
2 do not conflict, they are combined into a
two-MB MI.

The next MB is MB 3. It is data depen-
dent on MB 2, so it can be placed no higher
than MI 2. Therefore a new MI, MI 2, that
holds MB 3 is created,

MB 4, being data dependent on MB 3,
similarly forms a new MI, MI 3. In the same
fashion, MB 5 forms MI 4. MB 6, data
dependent on MB 4, can rise no higher than
MI 4. MB 6 cannot be placed in MI 4,
however, because of a conflict between
MBs 5 and 6. MB 6 is placed in a new
microinstruction, MI 5.

FIGURE 13. Lm execution ~acefor ~eexample m Figure12.

List of MIs after Adding Microoperation Bundle:

I 2 3 4 5 6 7 8
MI
I I 1,2 1,2 1,2 1,2 1,2 1,2 1,2
2 3 3 3 3 3 3
3 4 4 4 4,7 4,7
4 5 5 5 5,8
5 6 6 6

ComputingSurveys, VoL 12, N o. 3, ~e~tember 1980

282 • D. Landskov, S. Davidson, B. Shriver, P. W. Mallett

(* predefined eons t maxMBs, maxInstrs;
predeflned type MOBUNDLE, INSTR; ~
type SLMB s a r r ay [0 , j n a ~] ~ ' MOBUNDLE; 0th elem m length
t ~ e SLMI - a r r ~ [0..m~lnstr.] otmSTa; ~h elm - length
The procedures and functions used must be'defined.

•) " :

 7oed e L in (sh B:

Approximate mirJmization of number of microinstructions constructed from microoperation bundles in slm
form (branches 0nly at end, entries only at start).

,)
v a r b: MOBUNDLE;

bNum: 1..maxMBs;
i : integer;
riseLimit:0..maxInstrs; (* instr that b cannot precede *)
lastI: 0..maxInstrs;

begin
AppendI (InstrFromMB (slmB[1]), slmI);
lastI :R 1;
for bNum ffi 2 to NumElements (slmB) do b e g i n

b : - slmB[bNum];
(* Find RiseLhnit *)
i :ffi lastI;
whi le (i > 0) and CanPrecedeI (b, s imile) do i :ffi i - 1;
riseLimit :E i ;
(* Add b to an instr <ffi riseLimit *)
i f (riseLimit ()0) and

CanAddToUnprecedableI (b, slmI[riseLimit])
t hen AddToI (b, slml[riseLimit])
e lse beg in

(* i is still ~- riseLimit *)
(* note slmI[lastI + 1] might be referenced below *)
r e p e a t i :ffi i + 1
unt i l (i > lastI) or CanAddToPrecedablel (b, slmI[i]);
i f i <~- lastI t hen AddToI (b, slmI[i])
e lse beg in (* no instr where b can be added *)

ff riseLimit ffi 0
then InsertIAtTop (InstrFr0mMB (b), slmI)
else AppendI (InstrFromMB (b), slml);
lestI : s lastl ÷ 1;

end (* if *);
end (* if*);

end (* for *);
end (* Lin *);

FxcuaE 14. Lin in PASCAL.

The next MB, MB 7, is not data depen-
dent on any previously placed MB. It can
therefore be placed in any- MI with which
it does not conflict. The search for such an
MI starts with MI 1. MB 7 cannot be placed
in MI 1 because of a conflict with MB 2. It
cannot be placed in MI 2 because of a
conflict with MB 3. There is no conflict
with MB 4, so MB 7 can be added to MI 3.
MB 8 is the last MB to be placed. It cannot

Computing $~rveys, V ol,I12,N0. ~ ~ p ~ 1980

be placed in an MI before MI 4 because of
its data dependency on MB 7. It can be
added to MI 4 since there is no conflict
between MBs 5 and 8.

The final microprogram has five microin-
structions and is of optimal length. That is,
there is no way to form fewer than five
microinstructions from this SLM. We can
intuitively see that five is the minimum
length by noticing that the longest path

Local Microcode Compaction Techniques • 283

(2) (3) (I)

(5) (4)
/

(6) I c 3
/ \ I c5

(7) (8) 7 c 8

(a) (b)

List of Mls after Microoperation Bundle:

I 2 3 4 5 6 7 8
MI
I I 1,2 3 3 3 3 3 3
2 1,2 1,2 1,2 1,2 1,2 1,2
3 4 4,5 4,5 4,5 4,5
4 6 6 6
5 7 7
6 8

(c)
FIGURE 15. Example of nonoptimal Lin execution. (a) Renumbered

data dependency graph. (b) Renumbered microoperation conflicts.
(c) Execution trace.

through the DDG is of length 4. To keep
data-dependent MBs in different MIs, we
need at least four MIs, and therefore 4 is
the theoretical lower bound. A fifth MI is
necessary due to the conflict between MB
5 and MB 6.

A PASCAL procedure for the Lin algo-
rithm can be seen in Figure 14. In order to
run, this procedure must be supported by
the predefined types MOBUNDLE and
INSTR, as well as by the following routines:
AppendI, CanPrecedeI, CanAddToUnpre-
cedableI, CanAddToPrecedableI, AddToI,
and InsertIAtTop.

Though the Lin algorithm performed op-
timally in the example of Figure 13, it is not
guaranteed to do so. Figure 15a shows the
DDG in Figure 12 renumbered. Since Lin
is a first-come, first-served algorithm, this
will have an effect on the performance.

Figure 15c shows the performance of Lin
on this DDG. MBs 1 and 2 are not data
dependent on each other and do not con-
flict, and so are combined into MI I. MB 3
is not data dependent on either of the pre-
vious MBs and so can be added to MI I if
it does not conflict with the MBs. However
MB 3 does conflict with MB 1, so a new MI
must be formed. In this case, as mentioned
previously, we form a new MI above the
already formed MI. MB 4, data dependent
on MB 1, is placed in MI 3. MB 5, data
dependent on MB 3, can be placed no ear-

lier than MI 2. It conflicts with MB I in MI
2, however, and is therefore placed in MI 3.
MBs 6, 7, and 8 are placed next, forming
three new MIs, as in the foregoing example.
The resulting microprogram is six microin-
structions long and is thus nonoptimal.

How can this algorithm be made always
to produce optimal results? This can be
accomplished only by running the algo-
rithm with the MBs in the SLM in every
legal order (every order that does not vio-
late data dependency) until an optimal list
of MIs is obtained. However it is imprac-
tical to do this because the many redundant
calculations involved make. this approach
much slower than the BAB algorithm of
Section 4.3.

Weak dependencies are handled in a
straightforward manner by the Lin algo-
rithm. They are tested when Lin starts to
check for conflicts with the rise limit. The
current MB was found to be dependent on
some MB(s) in the rise limit. Any strong
dependency here means the current MB
cannot be added to the rise limit MI. In the
PASCAL example of Figure 14, this analy-
sis is done by CanAddToUnprecedableI.

4.2 The Critical Path Algorithm

Critical path algorithms for ~dcrocode com-
paction were introduced by Ramamoorthy

Computing Surveys, VoL 12, :No. 3, September 1980

284 • D. Landskov, S. Davidson, B. 8hriver, P. W. Mallett

Early Partition Late Partition Critical Partition
Frame

1 1 , 2 , 7 2 2
2 3,8 1,3 3
3 4 4,7 4
4 5,6 5,6,8 5,6

(a)

Revised Critical Partition
Frame

I 2
2 3
3 4
4a 5
4b 6

Co)

Noncritical MBs

1,7,8

List of MIs After Adding Noncritical MB:

1 7 8
Frame

I 1,2 1,2 1,2
2 3 3 3
3 4 4,7 4,7
4a 5 5 5,8
4b 6 6 6

(c)

FIouR~. 16. CPath execution of the example in Figure 12. (a) Forming tl~e critical partition. (b) The
revised critical partition. (c) Adding the noncritical MBs.

and Tsuchiya [RAMA74]. Their technique
was similar to the critical path approach to
processor scheduling [RAMA69, GONZ77].
The following critical path algori thm
(CPath) attempts to identify MBs that
must be executed at a certain time in order
for the list of MIs to be optimal. The MBs
chosen are those which are on a longest
path (the critical path) through the DDG.
As noted, the minimum possible number of
MIs is just the length of a longest path. If
any MB on this path is delayed beyond the
MI where it first becomes data available,
any MB following will also be delayed, and
the number of MIs in the list will be in-
creased.

CPath proceeds as follows (see Figure
16). The first s tep is to create an ea r ly
pa r t i t i on (EP). Each time frame of the EP
contains those MBs that could be executed
in that time, at the earliest. Figure 16a

Computing Surveys, Vot 12, No. 3, September 1990

shows the EP for the example SLM. Since
MBs 1, 2, and 7 are not data dependent on
any other MB, they can be executed in
frame 1. MBs 3 and 8 are each dependent
on an MB in frame 1 and thus can be
executed in frame 2 at the earliest. MB 4 is
dependent on MB 3 in frame 2, so it can be
executed in frame 3. Notice that although
MB 4 is also dependent on MB 1, i t must
be placed in frame 3; otherwise it could
execute at the same time as one of its
ancestors in the DDG. An MB must be
placed in the frame of the EP after the
frame of its latest ancestor.

MB 5, being dependent on MB 4, is
placed in frame 4. The same is true for MB
6. Notice that data dependencies alone de-
termine the placement of MBs in the EP.
Conflicts are resolved later.

The final early partition is of length 4.
This is the length of the longest path

Local Microcode Compaction Techniques , 285

through the DDG and defines the minimal
number of MIs in the list of MIs.

The next step is the creation of a la te
pa r t i t ion (LP). In the LP the latest possi-
ble timings of the MBs are displayed. The
LP is created by moving backward through
the SLM. No MB is dependent on MB 8,
so MB 8 can be the last MB executed. It
can therefore be placed in time frame 4 of
the LP. Again, the length of the LP is just
the length of the longest path through the
DDG.

The next MB placed is MB 7. Since MB
8 is dependent on MB 7, MB 7 must be
placed in the time frame before MB 8, or
frame 6. No MBs are data dependent on
either MB 5 or 6, and so these MBs can be
placed in time frame 4. Since MBs 5 and 6
are dependent on MB 4, MB 4 must be
placed in frame 3. MBs 1 and 3, both ances-
tors of MB 4, must be placed in the frame
preceding that of MB 4, flame 2. Finally,
MB 2, the ancestor of MB 3, is placed in
frame 1. The resulting LP is in Figure 16a.
If the data dependency graph is represented
by a matrix, the LP can be created by
applying the EP algorithm to the transpose
of the graph matrix.

The construction of these partitions fa-
cilitates the identification of MBs on the
critical path of the DDG. These MBs,
called critical MBs, are just those with the
same early and late timings. It is trivial to
construct a cr i t ical pa r t i t ion (CP) by ex-
amining the EP and LP. The critical parti-
tion for our example is shown in Figure 16a.
MBs 2, 3, 4, 5, and 6 are critical here. The
length of the CP is, of course, the length of
the longest path through the DDG, in this
case 4. The CP serves as a skeleton of our
final list of MIs.

Since the CP was constructed by consid-
ering only data dependencies between MBs,
two MBs in the same frame of the CP may
conflict. And since the frames of the CP
will serve as a basis for MIs in the list of
MIs, conflicting MBs in a frame must be
separated. In frame 4 of our example CP,
MBs 5 and 6 conflict. A frame with conflict-
ing MBs must be split so that the MBs in
the resulting subframes do not conflict. In
our example frame 4 is trivially split into
subframes 4a and 4b, each containing a
single MB. The result of this process, the
r ev i s ed cr i t ical pa r t i t i on (RCP), is

shown in Figure 16b. We will continue to
talk in terms of frames because they pro-
vide a link between the RCP and the early
and late partitions. As seen from frame 4,
one frame can contain several microinstruc-
tions. A subframe is a partially complete
microinstruction. Either FonnCIs or a sim-
ilar algorithm must be used to form the
subframes.

The next and final step of CPath is to
add the noncritical MBs to the RCP, form-
ing the final list of MIs. The noncritical
MBs here are MBs 1, 7, and 8. We search
the RCP from the frame containing the MB
in the EP to the frame containing the MB
in the LP for a microinstruction to which
the noncritical MB can be added. In the
case of MB 1, we start with frame 1 and end
with frame 2. If the MB cannot be added to
any of the frames within this range, a new
subframe is created. This subframe is posi-
tioned at the end of the last frame in the
range. The MB is placed in this subframe,
creating an MI with only one MB. In our
example, however, MB 1 can be added to
the MI in frame 1 without difficulty. Figure
16c, column 1, shows the list of MIs after
MB 1 is added.

MB 7 can be added to either frame 1, 2,
or 3. It cannot be added to frame 1 because'
of a conflict with MB 2 or to frame 2
because of a conflict with MB 3. It can be
added to frame 3 however.

The final MB to add is biB 8. If we used
the EP to indicate the earliest frame to
which MB 8 could be added, we would find
that it could be added to frame 2. If it were
added to frame 2, however, it would be
placed before MB 7, thus violating the data
dependency constraint. Therefore we must
revise the EP to place all MBs dependent
on MB 7 after MB 7. The earliest timing of
MB 8 becomes frame 4, which is also the
latest possible timing. We at tempt to add
MB 8 to the subframes of frame 4, in turn,
and find that MB 8 can indeed be placed in
subframe 4a. Column 8 of Figure 16c shows
the final list of MIs, which is of length 5
and therefore optimal.

The critical path algorithm, like the lin-
ear algorithm, does not always produce op-
timal results. This can be shown by consid-
ering our example DDG, plus the following
conflict: 4 c 7. The early, late, critical, and
revised critical partitions remain the same

Compttting Sm~veys, VoL ~No. 3~ Sel~mnber 1980

286 D. Landskov, S. Davidson, B. Shriver, P. W. Mallett

List of MIs a£ter adding Noncritical MB:

" 1 7 8
Frame , F r a m e ~ ,

1 1,2 1 1,2 1,2
2 3 2 3 3
3 q 3a . 4 4
4a 5 3b 7 7
4b 6 t l a 5 5,8

4b 6 6

FIGURE 17. Example of nonoptimal CPath execution: Adding the noncritical MBs.

as fo~ the foregoing example. However the
result of adding the noncritical MBs is
changed. MB I can be added to frame 1, as
before. MB 7, however, cannot be added to
frame 3 because of a conflict with MB 4.
Since frame 3 is the latest time frame of
MB 7, a new subframe must be created
after frame 3 and before frame 4a. In col-
umn 7 of Figure 17 MB 4 is in frame 3a and
MB 7 is in frame 3]).

As before, MB 8 must be placed within
frame 4. It can be placed in frame 4a, giving
the list of MIs of•Figure 17, colUmn 8. This
list of MIs is of length 6 and is nonoptimal,
as can be seen by moving MB 8 to frame 4b
and MB 7 to frame 4a, giving the list of MIs
of Figure 18. This list of MIs is five microin-
structions long and is optimal.

This example shows the weakness of the
critical path algorithm. Two adjacent
subframes may be composed into a single
microinstruction but are not because of the
rigid boundaries between frames imposed
by the algorithm. This problem does not
arise from the first-come, first-served na-
ture of the algorithm. The foregoing non-
optimal list of MIs would have been ob-
tained for any ordering. Both an exhaustive
search of the possible orderings and an
attempt to cc,'nbine adjacent frames would
be necessary to make this algorithm opti-
mal.

Frame MI

FIGURE 18.
Figure 17.

I 1,2
2 3
3 4
4a 5,7
4b 6,8

An optimal solution to•the problem of

Weak dependencies are handled in
CPatl~ by putting MBs in the same frame
of the E P a n d LP as the parents on which
they are weakly dependent.

• 4 .3 The Branch and Bound Algorithm

The third algorithm to be considered is
branch and bound (BAB), a general class
of tree,searching scheduling a~gorithms.
Yau, Schowe, and Tsuchiya [YAU74] were
the first todescribe the application of this
technique to micr6code compaction.

In BAB, a tree is built, the nodes of which
correspond to micrginstructions. A path
from the root of thee tree to a leaf is an
ordering of MIs, and thus a list of MIs. The
tree branches whenever there is more than
one mie_roinstruction that could be placed
at a point in the list of MIs. A complete tree
represents every possible microinstruction
ordering.

There are two variants of this algorithm.
The first is BAB exhaustive, in which every
branch of the tree that could possibly lead
to an optimal MB ordering is explored. The
other is BAB heuristic, in which pruning is
done to the tree. BAB exhaustive is an
optimal algorithm, thus running in expo-
nential time, while BAB heuristic is not
guaranteed optimal and can be made to run
in polynomial time.

The growth of the tree can be bounded
even in BAB exhaustive. As in the other
algorithms, calculate the lower bound on
the number of microinstructions in the best
possible ordering. (Remember that this is
the longest path through the DDG.) A path
through the BAB tree of this length repre-
sents an optimal ordering, and the algo-
rithm can stop once such a path is obtained.

Local Microcode Compaction Techniqueg • 287

The growth of the tree can be further
bounded by remembering the length of the
best (shortest) path found so far. If the
length of an incomplete list of MIs is greater
than or equal to this length, the current
path needs no further consideration.

Like the critical path algorithm, the BAB
algorithm gets its information on the data
dependencies of an SLM's MBs through a
DDG. The first step of the BAB exhaustive
algorithm is the construction of a data
ava i lab le se t (Dset). This is the set of all
unplaced MBs that are not data dependent
on any unplaced MB. The contents of the
Dset change as execution of the algorithm
progresses. The initial Dset (Dset 1) for our
example in Figure 12 is 1, 2, 7 (just those
MBs not dependent on any other MB).

The next step is to form microinstruc-
tions from the MBs in the Dset. We wish
to form only the largest possible MIs. These
are called complete instructions (CIs). A
complete instruction is defined as an in-
struction to which no other MB in the Dset
can be added (see Section 3). Thus a CI is
not a subset of any other legal MI. CIs
make up the nodes of the BAB tree so that
a path through the tree (a list of MIs) is a
list of CIs.

An algorithm for the identification of CIs
is found in Section 3. For our example, the
CIs are easily identified. For Dset 1, the CIs
are 1, 2 (I1) and 1, 7 (I2). MBs 2 and 7
cannot appear together because of the con-
flict between them. MB 1 by itself is a legal
microinstruction but not a CI because it is
a subset of I1.

At this point it is not known which of the
CIs will lead to a better list of MIs. There-
fore the tree must be split and each CI dealt
with in turn. Figure 19 shows the execution
of the BAB exhaustive algorithm. Each
part of the figure shows one step. In Figure
19a the initial Dset, the CIs generated from
it, and the tree produced by splitting the
CIs are shown.

We built the BAB tree depth-first to
allow us to find the length of some com-
pleted paths which may enable us to cut off
some other paths. Let us proceed with the
left branch of the tree.

Calculate Dset 2 by first removing the
MBs in I1 from Dset 1. This leaves MB 7
in the Dset. Next add the MBs that have

become data available to the Dset. At this
point MB 3, data dependent on MB 2,
becomes data available because MB 2 has
been added to the tree. Note that MB 4
does not become data available because it
is dependent on MB 3, which is still in the
Dset at this point.

Since MBs 3 and 7 conflict, there are two
single MB CIs that can be generated from
Dset 2: I3, which consists of MB 3, and I4,
which consists of MB 7. Split the tree again.
Figure 19b shows the state of the tree at
this point.

Again proceeding down the left branch,
calculate Dset 3. This Dset consists of MBs
4 (dependent on MB 3) and 7. Since these
MBs do not conflict, only one CI can be
generated from this]:)set, which consists of
both MBs 4 and 7. Thus we do not branch
here. The tree with this node added is
shown in Figure 19c.

The new Dset (Dset 4) consists of those
MBs dependent on MBs 4 and 7. All the
remaining MBs fit this description, so Dset
4 contains MBs 5, 6, and 8. Since MBs 5
and 6 conflict, two CIs are formed from this
Dset; one contains MBs 5 and 8, and the
other contains MBs 6 and 8. Since there are
two CIs, the tree branches, thus producing
the tree of Figure 19d.

Pick I6, leaving MB 6 in the Dset. This
Dset, Dset 5, obviously forms just one CI,
I8. Adding I8 to the tree exhausts the MBs
in the SLM, so the path from the root to I8
forms a list of MIs of elements I1, I3, I5, I6,
and I8. Figure 19e shows the equivalent list
of MIs, which is of length 5 and is optimal.
However it does not reach the lower bound
of length 4, and since there are more CIs to
investigate, execution of the algorithm does
not terminate. Mark the leaf of this path
with a "P" to indicate that this is the best
path tbund so far.

Now back up to Dset 4 and move down
the right path, choosing I7. The new Dset,
Dset 6, consists of MB 5, which forms one
CI, I9. Add I9 to the tree (Figure 190, thus
exhausting our list of MBs and producing
a new list of MIs. Since this list of MIs is of
length 5, which is no better than the first
one produced, we throw this list of MIs
away--indicated by placing an "X" below
node I9.

The next incomplete path ends with node

Computing Surveys, Vol. 12, No. 3, September 1980

288 • D. Landskov, S. Davidson, B. Shriver, P. W. Mallett

Dset. 1~: '1 ,2,7
CIs:~ 11 = 1,2 I'\.

12 = I ,7 11 12

(a)
i il

CONSIDER I3
Dset 3:4,7
tIs: 15 = 4,7 I \

II I2
/ \

I3 I4
I

I5

(o)
i i u ,

CONSIDER 16
Dset 5:6
CIs: 18 = 6 / \

11 12
/ \

I3 14
I

15
/ \

16 17
I.
I8

(e) P

CONSIDER I4
Dset 7:3,8
Cls: II0 = 3,8 I \

11 12
/ \

i3 I4
I l

I5 I10
/ \

16 17
t I

18 19
(g) P x

CONSIDER I2
Dset 1 0 : 2 , 8
Cls: I14 : 2,8 / \

II I2
(Dset 9 left / \ I
to reaOer) I3 14 114

i l
I5 II0

/ \ I
I6 I7 ' II I
l I / \

18 I9 I12 113
(i) P X X X

CONSIDER II
Pset 2:3,7
CIs: I3 = 3

I4 = 7

(b)

CONSIDER I5
Dset 4:5,6,8
CIs: I6 = 5,8

I7 : 6,8

(d)

CONSIDER I7
Dset 6:5
CIs: 19 = 5

(f)

CONSIDER 110
Dset 8:4
Cls: 111 : 4

/ \
II I2

/ \
I3 I4

/ \
II I2

/ \

I3 14
I

15
/ \

I6 I7

/ \
II I2

/ \
I3 I4
i

I5
/ \

I6 I7
i l
I8 I9
P X

I \
II I2

/ \
I3 I4
I I'
15 ii0

/ \ I
I6 I7 I11
i I
I8 I9

(h) P x
i

CONSIDER I16
Dset 13:5,6
CIs: I17 = 5 / \

I18 = 6 II I2
/\ I

(Dsets; 11 & .I3 I4 I14
12 left to / / I
reader) 15 110 I15

/ \ I I
I6 I7 I11 I16
I I I\ I\

I8 I9 I12 I13 I17 I18
(j) P x x x x x

FIOURE 19. BAB exhaustive execution of the example in Figure 12.

Computing VoL 12, .3,

Local Microcode Compaction Techniques

I4. Remember from Figure 19b that the
Dset when this node was added to the tree
was 3, 7. I4 corresponds to the choice of the
CI consisting of MB 7. Thus the remaining
Dset consists of MB 3. The new Dset, Dset
7, consists of the MBs dependent on MB 7
(MB 8) and MB 3. Dset 7 is shown in Figure
19g. Only one CI can be formed from this
Dset. This instruction, I10, consists of both
MBs 3 and 8. It is added to the tree after
I4, as shown in Figure 19g.

Figure 19h shows the addition of the next
CI, I l l . There is nothing new in this step,
or until the state shown by the tree in
Figure 19i. I12 consists of MB 5. At this
point we have placed all MBs except MB 6
in 5 MIs. Since we have equaled the best
path length, with one more MB to place,
we know we can do no better than the list
of MIs shown in Figure 19e, and we cut off
this path. The same holds for the path
ending with I13, except that here we have
placed all but MB 5.

Next back up to I2, constructing I14 out
of Dset 10 as shown in Figure 19i. The end
of this path, and the complete BAB tree, is
shown in Figure 19j. As in the case of the
path ending with I12 and I13, at nodes I17
and I18 we have equaled the best path
length so far without placing all of the MBs
in the SLM. Therefore we can cut off, as
shown by the X's under nodes I17 and I18.
At this point there are no more incomplete
paths, and the algorithm has completed.
The list of CIs found is the one shown in
Figure 20. This list of CIs is of optimal
length.

In BAB weak dependencies are handled
b y the FormCIs algorithm.

CI MBs

FIGURE 20.

11 1,2
I3 3
I5 4,7
I6 5,8
18 6

The solution ~und m Figure 19.

4.4 Branch and Bound Heuristics and List
Scheduling

Since the branch and bound algorithm con-
siders all possible combinations of MBs, it
is guaranteed to produce an optimally im-

• • 2 8 9

proved microprogram. The cost, however,
is exponential since all of the paths of the
tree must be explored. It is possible to find
a heuristic that will prune the BAB tree
without affecting the resulting micropro-
gram too adversely. Such a heuristic will,
of course, not always produce optimal re-
sults, but it should save a great deal of time.
Tests of different heuristics have been re-
ported by Mallett [MALL78].

Consider the following heuristic: Instead
of examining each complete instruction
generated from a Dset, examine only the
"best" CI, where the best instruction is
determined by some metric. This heuristic
requires only an amount of time that grows
polynomially with the number of MBs in
the SLM.

An algorithm that executes in this man-
ner is an example of a list scheduling algo-
rithm [ADAM74, FISH79]. Although list
scheduling algorithms can be considered a
special case of branch and bound algo-
rithms, they are important in their own
right. A list scheduling algorithm can be
programmed much more easily than a full
branch and bound algorithm. The tree of
CIs is just one branch, and no bounds
checking need be done. Furthermore, the
complexity of FormCIs is greatly reduced,
as noted in Section 3.2.

MB Weight

1 3
2 4
3 3
4 2
5 0
5 0
7 I
8 0

FIGURE 21. MB weights for the example in Figure
12 (number of descendants in DDG).

The weighting function used in forming
the complete instruction affects the opti-
mality of the compaction. Extensive tests
of different functions were reported by
Fisher [FISH79]. We present an example
using a function proposed by Wood
[WooD78].

The metric used by Wood is as follows.
Assign a weight to each MB in the DDG.
The weight of an MB is the number of
descendants of that MB (direct or indirect)

Computing Surveys, VoL 12, No. 3, September 1980

290 • D. Landsko~ S. Davidson, B. Shriver, P. W. Mal~tt

Dset Contents Complete Inst. List of ~

I 1,2,7 2,1~, ~ ~2,1

2 3,7 3 2,1
3

3. 4,7 4,7 2,1
3

4,7

4 5,6,8 5,8 2,1
(First-Come, 3
First-Served) 4,7

5,8

5 6 6 2,1
3

4,7
5,8
6

FIGURE22. Lmtschedulingexecutionoftheexamplein Figurel2.

Mls

in the DDG. Figure 21 gives the weights of
the MBs in our example. MB I has a weight
of 3, since MBs 4, 5, and 6 are its descen-
dants. MB 2 has a weight of 4, since its
descendants are 3, 4, 5, and 6. MBs with no
descendants, such as MB 8, are assigned a
weight of 0.

Execution proceeds as follows (see Figure
22). Compute a Dset from the DDG. Find
the MB in the Dset with the highest weight.
Add it to the MI, which is initially empty.
Then find the MB with the second highest
weight. If this MB does not conflict with
any MB already in the MI, add it. Repeat
until all the MBs in the Dset have been
examined. The resulting MI is the CI with
the highest weight. Add this MI to the list
of MIs and compute a new Dset. Repeat
until all of the MBs in the SLM have been
placed.

In Figure 22, Dset I contains MBs 1, 2,
and 7. MB 2 is the MB of highest weight
and is placed first in the CI. MB I has the
second highest weight and can be added to
the CI without conflict. The remaining MB
in the Dset, MB 7, cannot be added to the
CI because of a conflict between MBs 2 and
7, and so the first instruction in the list of
MIs is 2, 1. The construction of the rest of
the list of MIs is straightforward. In this
case the final list of Mis is of length 5, is
optimal, and is exactly the same as the list
of MIs produced by the exhaustive variant
of BAB.

Computing Surveys, Vol. 12, No. 3, S e p ~ 1980

4.5 Computationa! Complexity

In the past, the microcode compaction
problem has had the reputation of being
very complex [AO~.R76]. It was widely be-
lieved that a program for automatic com-
paction would be too expensive to run in a
production environment. This reputation is
well deserved in the optimal case. Compac-
tion is in a class of difficult problems which
includes such well-known elements as the
"traveling salesman problem." But as with
many of these problems, there exist practi-
cal algorithms that can produce acceptable
results for many applications.

NP is a well-known class of "difficult"
problems [MACH78]. Problems in this class
can be solved on a nondeterministic Turing
machine in polynomial time. Certain prob-
lems in N P are NP complete. If a polyno-
mial time (deterministic) algorithm can be
found to solve any problem that is NP
complete, then a polynomial time algorithm
can be found to solve every problem in the
class. Since an algorithm with less than
exponential time has never been found for
an NP-complete problem, it is widely be-
lieved that all NP-complete problems are
of at least exponential complexity. We now
show that microcod¢ compaction is at least
as difficult as NP-complete problems.

In ULLM73 the unit time scheduling prob-
lem is shown to be NP complete. This prob-
lem is as follows:

Local Microcode Compaction Techniques • 291

Given

(1) a set S ffi { J1 , . . . , Jn} of jobs,
(2) a partial order << on S,
(3) that each job requires one time unit,

and
(4) a number of processors, k

(up to k jobs may be executed at each time
unit), minimize tmax, the total number of
time units required, under the constraint
that if J << J ' , then J ' does not execute
until at least one time unit after J.

It is straightforward to restrict our model
to this problem. Let the SLM correspond
to S, let data dependency be <<, and let the
number of fields in an MI be k, where each
MB can be in any field. (This same proof is
done for a slightly different model in
DEWI76.) Thus, if microcode compaction
can be solved in less than exponential time,
so can all problems in NP complete.

An alternate approach to establishing the
exponential complexity of microcode com-
paction can be found in YAU74. It should
be pointed out that some articles in the
literature have claimed to have less-than-
exponential solutions to the optimal com-
paction problem. All of these claims have
been shown to be invalid.

Nonoptimal algorithms do not have to be
exponential. The critical path, linear, and
list scheduling algorithms work in polyno-
mial time. It should be noted that the name
linear does not imply that this algorithm
has linear complexity but rather that the
SLM is processed one MB at a time.

That the linear algorithm runs in poly-
nomial time can be shown by considering
the worst case SLM, wherein there are no
data dependencies between MBs and where
each MB conflicts with each other MB. In
this case each already placed MB must be
examined in order to ascertain that the new
MB is not data dependent on any MB in
the list of MIs. That is, i - 1 checks for
data dependency must be done for the ith
MB. The total number of checks done for
an n MB SLM is therefore (n - 1)n/2.
Each already-placed MB must be checked
for conflict during the search for an MI to
which the MB can be added. Again, for an
n MB SLM, (n - 1)n/2 checks for conflicts
must be done. Therefore n ~ - n compari-
sons must be done between MBs in this

worst case, showing that the complexity is
O(n2).

A branch and bound algorithm with suit-
able heuristics is competitive with the other
algorithms.

Extensive tests which support these con-
clusions are reported in MALL78. In one
test of an SLM of 96 MBs (231 MOs), for
example, Lin compacted to 55 MIs using
309 MO-to-MO comparisons, CPath com-
pacted to 54 MIs using 376 comparisons,
and a BAB heuristic restricted to list sched-
uling compacted to the optimal 50 MIs
using 491 comparisons. The execution times
on a Honeywell 68/80 processor (MUL-
TICS) were 6.7 seconds, 11~ seconds, and
7.5 seconds, respectively. By contrast, an
exhaustive BAB compaction required
183,364 comparisons to find the optimal 50
MIs and ran in 2629 seconds.

One practical factor affecting the execu-
tion times of compaction programs is often
overlooked. Because branches and entry
points (i.e., labels) are common inmicro-
programs, the typical SLM is not very long.

4.6 Register Allocation

The previous sections on compaction algo-
rithms do not address the problem of allo-
cating registers. This makes the presenta-
tions easier to understand. Furthermore,
many applications do not need the compac-
tion routine to allocate registers. Spurred
by the rapid drop in the cost of high-speed
memory, the trend in computer architec-
ture is to include more and more registers
for microprogramming. If there are more
registers than microprogram variables,
each variable can be allocated a register
before compaction, and reallocation need
never be done.

The register allocation problem is as fol-
lows. In addition to process registers, most
microprogrammable processors have a lo-
cal store. Data can be moved back and
forth between the registers and local store.
If there are more variables than registers,
registers must be reallocated during the
execution of the program. To reallocate a
register, the value of the old variable must
be saved in local store (if the register has
changed value), and the value of the new
variable must be loaded from local store (if
it is needed). The difficulty with register

Computing Surveys~ VoL 12, No. 3, September 1980

292 • D. Landskov, S. Davidson, B.

reallocation is deciding which variables to
reaUocate when a variable needs a register
and there are no more unailocated (f~ee)
registers. The wrong choice of variables can
necessitate extra reallocations later.

Register allocation can be incorporated
into the compaction algorithms presented
here by considering variables as unbound
resources. The variable-to-register binding
must be maintained in a separate data
structure. Whenever a register reallocation
becomes necessary, the different possible
reallocations correspond to different MB
versions. Store and load microoperations
must also be added to perform t h e reallo-
cation. The register allocation problem is
discussed at length in DEWI76.

It should be noted that register allocation
also-affects global analysis. Since register
allocations are maintained between SLMs
as well as within them, an SLM is often
constrained by initial and final register al-
locations. Under this constraint the order
in which SLM compactions are performed
is important. An unconstrained SLM may
compact to fewer MIs than its constrained
counterpart. Thus the most critical SLMs
(inside loops, say) should be compacted
first.

5. CONCLUSIONS

Linear analysis compaction algorithms are
easy to write, and they run in a reasonable
amount of time. However they can only
operate on SLMs in sequential form, and
their results depend orL the order of the
microoperation bundles in the SLM. It is
easy to construct an example for which
linear algorithn~ produce more MIs than
necessary.

Critical path, branch and bound, and list
scheduling algorithms operate on the SLM
in graph form. Having to build a graph does
not significantly increase execution time.
The graph building program is also easy to
write, although the compaction algorithms
themselves are not straightforward to pro-
gram. Critical path algorithms have diffi-
culties with the rigid boundaries they im-
pose between frames. These kinds of algo-
rithms do not seem to be the best approach
for microcode compaction.

Branch and bound algorithms can be ex-
haustively run to find optimum solutions
(for the minimization of the number of MIs

Computing storeys, Vol. 1~ No. S, September

Shriver, P. W. Mallett

for the SLM), but doing so is prohibitively
expensive. List scheduling algorithms and
branch and bound algorithms with suitable
heuristics can compact approximately as
fast as linear analysis algorithm.s and are
not nearly as dependent on the original
order of the microoperations. Furthermore
the probability of an optimal branch and
bound compaction can be adjusted by
changing the heuristics. List scheduling
programs are easier to write than branch
and bound programs.

These algorithms can work with realistic
processor models. It is true, however, that
realistic hardware details make the algo-
rithms harder to program. In particular,
whenever microoperations have a choice of
resources (registers, fields, e tc .)where the
choice can have an adverse effect on later
execution, the complexity of the compac-
tion problem increases. Further investiga-
tion of modeling processor control is
needed.

Exhaustive comparisons of the compac-
tion algorithms have shown that all four
kinds are capable of producing acceptable
compactions in a reasonable amount of
time. Often the small size of an SLM makes
local compaction trivial. Although many
issues merit further study, especially with
regard to global compaction, practical com-
pilation of horizontal microcode is feasible.

GLOSSARY
Compaction--Production of a sequence of mi-

croinstructions that is semantically equivalent
to a given ordered set of microoperations.
Most compaction~ try to minimize execution
time.

Compatible--Having no resource conflicts.
Complete instruction (CI)--Instruction to

which no other MB in the Dset can be added.
Confliet--Attempt to share an unsharable re-

s o u r c e .

Data available--Addition of an MO to a par-
ticular MI in a list of MIs does not violate
data integrity.

Data dependent (dd)--mol dd mo/if moy is
directly data dependent either on moi or on
an MO which is itself data dependent on mol.

Data dependency graph (DDG)--Graphical
representation of a partial order over the MOs
of an SLM.

L o c a l M i c r o c o d e C o m p a c t i o n T e c h n i q u e s

D a t a i n d e p e n d e n t ~ N o t data dependent.

D a t a i n t e r a c t i o n - - T w o MOs have a da ta in-
teraction if an input operand of one is also an
output operand of the other or if they have an
output operand in common.

D i r e c t l y d a t a d e p e n d e n t (ddd)--mo~ d d d moi
if mol precedes moj in the given MO ordering,
if moi and moy have a data interaction, and if
no nonempty chain of directly data dependent
MOs exists between them.

F ie ld - -Col lec t ion of bits in the control word
tha t controls a primitive machine activity.

G l o b a l a n a l y s i s - - A n a l y s i s that considersmore
than one SLM.

H o r i z o n t a l a r c h i t e c t u r e - - A r c h i t e c t u r e tha t
allows many MOs in the same MI.

Host m a c h i n e - - C o m p u t e r tha t a given micro-
program is designed to control.

L o c a l a n a l y s i s - - A n a l y s i s tha t considers one
SLM.

M i c r o i n s t r u c t i o n (MI)--Specif icat ion of all
MOs tha t are to s tar t during one machine
cycle, i.e., a conflict-free set of MOs.

M i c r o o p e r a t i o n (MO)--Specif icat ion of a
primitive machine operation.

Microoperation b u n d l e (M B) - - A set of one
or more MOs tha t must be executed in the
same MI.

M i c r o p r o g r a m - - S e q u e n c e of microinstruc-
tions.

R e m a i n i n g D s e t (R D s e t) - - S e t of all remain-
ing MBs.

R e m a i n i n g M B - - M B in a Dset that has not
yet been included in or excluded from the
current microinstruction.

O r d e r p r e s e r v i n g - - T w o MOs are order pre-
serving if they can be placed in the same MI
(ignoring resource conflicts) such tha t for ev-
ery resource causing a data interaction be-
tween them, the MO that is earlier in the
SLM finishes with the resource before the
other MO star ts to use it.

P a r a l l e l - - T w o MOs which are order preserving
and conflict-free are parallel.

P a r t i a l i n s t ruc t ion - -Mic ro ins t ruc t ion for
which remaining MBs exist.

P o l y p h a s e t i m i n g - - A n MI cycle is composed
of dist inct phases; MOs are active only in
specified phases.

• 293

P o t e n t i a l l y c o m p l e t e i n s t r u c t i o n - - P a r t i a l
instruction tha t is not a subinstruction to any
known complete instruction.

S t r a i g h t - l i n e m i e r o e o d e s e c t i o n (SLM)--Or-
dered collection of MOs with no entry points
except at the beginning and no branches ex-
cept possibly at the end.

S t r o n g l y d e p e n d e n t (s d) - - I f moi d d d mo s and
it is known tha t moi is not weakly dependent
on moi, then mos is strongly dependent on moi
(moi sd moj).

Subinstruction--A part ia l instruction is a sub.
instruction to an instruction if the union of
the part ia l instruction and all MBs tha t can
potential ly be added to i t is a subset of the
instruction.

T r a n s i t o r y - d a t a r e s o u r c e - - S t o r a g e resource
whose contents can become undefined at the
terminat ion of an MI in which i t has been
given a value.

V e r t i c a l a r c h i t e c t u r e - - O n e tha t allows only
a few MOs, or one M 0 , in an MI.

W e a k l y d e p e n d e n t (wd) - -Given two MOs,
moi and moj, then moj is weakly dependent on
moi (moi w d rnoj) if moj is directly data depen-
dent on mo~, and if for every resource causing
a da ta interaction between them, moi finishes
with the resource before moj s tar ts to use it.

ACKNOWLEDGMENTS

The authors wish to thank the referees for their help-
ful comments. We are also grateful to Julie Jackson
for her many hours of assistance and to the other
volunteers who gave of their time.

ADAM74

AGER76

AGRA76

BARN78

COFF76

REFERENCES

AVAM, T. L., CHANDY, K. M., AND DICK-
SOS, J.R. "A comparison oflis~ schedules
for parallel processing systems," Commun.
ACM 17, 12 (Dec. 1974), 685-690.
AG~.RWALA, T. "Microprogram optimi-
zation: A survey," IEEE Trans. Comput.
C-25, 10 (Oct. 1976), 962-973.
AGRAWALA, A. K., ANY RAUSCHER, T.
G. Foundations of microprogramming,
Academic Press, New York, 1976.
BARNES, G. E. "Comments on the
identification of maximal parallelism in
straight-line microprograms," IEEE
Trans. Comput. C-27, 3 (March 1978), 286-
287.
COFFMAN, E. G., JR., Eb. Computer and
job-shop scheduling theory, Wiley, New
York, 1976.

Computing Sm-veys, VoL 12, No. 3, September 1980

294 • D. Landskov, S. Davidson, B. Shriver, P. W. Mallett

DASG76 DASGUm, S., AND TARTAR, J. "The RAMA69
idant'dlcation of maximal parallelism in
straight-line microprograms," IEEE
Trans. Comput. C-25, 10 (Oct. 1976), 986-
992.
DASOV~A, S. "Comment on the identi-
fication of maximal parallelism in straight- RaMA74
line microprograms," IEEE Trans. Corn-
put. Co27, 3 (March 1978), 285-286.
DASOm~rA, S. "The organization of mi-
croprogTam stores," ACM Comput. Surv. SHIn73
11, 1 (March 1979), 39-35/
DAVIDSON, S., AND SHRFeEE, B.D. "An
overview of fn, mware engin~ing," Corn- TABA74
purer 11, 5 (May 1978), 21-33.
DEWIer, D.J. "A control word model for
detecting conflicts between micr0opera-
tions," in Proc. 8th Annual Workshop on
Microprogramming (ACM), 1975, pp. 6- TOKO77
12.
DEWITT, D.J . "A machine-independent
approach to the production of horizontal
microcode," Ph.D. dissertation, Univ.
Michigan, Ann Arbor, June 1976; Tech.

• Rep. 76 DT4, Aug. 1976.
FISHER, J. A. The optimization of horizon- TOKo78
tal microcode within and beyond basic
blocks: An application of proeessor sched-
uling with resources, U.S. Dept. of Energy
Report, Mathematics and Computing COO.
3077-161, New York Univ., Oct. 1979. Tsuc74
GONZALEZ, M. J., JR. "Deterministic
processor scheduling," ACM Comput.
Surv. 9, 3 (Sept. 1977), 173-204.
KLEIn, R. L., AND RAMAMGoRTHY, C.
V. "Optimization strategies for micropro-
grams," IEEE Trans. Comput. C-20, 7
(July 1971), 783-795.
K~Em, R. L. "A representation for the
analysis of microprogram operation," in
Proc. 7th Annual Workshop on Micropro- WOOD78
gramming (ACM), 1974.
MACHTEY, M., AND YOUNG, P. An intro-
duction to the general theory of algo.
rithms, North-Holland, New York, 1978.
MALLETT, P. W., AND LEWIS, T. G. "Con- WOOD79
sidarations for implementing a high level
microprogramming language translation
system," Computer 8, 8 (Aug. 1975), 40-52. YAu74
MALLET% P.W. "Methods of compacting
microprograms," Ph.D. dissertation, Univ.
Southwestern Louisiana, Lafayette, Dec.
1978,

DASO78

DASG79

DAVI78

DEWI75

DEWI~

FISH79

GONZ77

KLEI71

E~EI74

MACH78

MALL75

MALL78

ULLM73

RAMAMOOIVI'HY, C. V., AND GONZALEZ,
J., JR. "A survey of techniques for rec-

• o ~ n g parallel processable streams in
computer programs," in Pro¢. 1960AFIPS
Fall Joint Computer Conf., AFIPS Press,
Arlington, Va., pp. 1-15.
RAMAMOORTHY, C. V., AND TSUCHIYA,
M. "A high-leval language for horizontal
microprogramming," IEEE Trans. Corn-
put. C-23, 8 (Aug. 1974), 791-801.
SHmVER, B. D. "A description of the
MATHILDA system," DA]MI PB-13,
Univ. Aarhns, Denmark, 1973.
TARANDEH, M., AND RAMAMOORTHY, C.
V. "Execution time and memory optimi-
zation in microprograms," in Proc. 7th An-
nual Workshop on Microprogramming
(ACM), 1974.
ToXORO, M., TAMURA, E., TAKASE, K.,
AND TAMURA, K. "An approach to micro-
program optimization considering resource
occupancy and instruction formats," in
Proe. lOth Annual Workshop on Micro-
programming (ACM), Oct. 1977, pp. 92-
108.
TOKORO, M., TAKIZUKA, T., TAMURA, E.,
AND YAMAURA, I. "A technique of global
Optimization of microprograms," in Proc.
l l th Annual Workshop on Microprogram.
m/ng (ACM), 1978, pp. 41-50.
TSUCHIYA, M., AND GONZALEZ, M. J.,
JR. "An approach to optimization of hor-
izontal microprograms," in Proc. 7th An-
nual Workshop on Microprogramming
(ACM), 1974, pp. 85-90.
ULLMAN, J. D. "Polynomial complete
scheduling problems," in Proc. 4th Sym-
posium on Operating Systems Principles;
ACM Operating Syst. ReD. 7, 4 (Oct. 1973),
96-101.
WOOD, G. "On the packing of micro-op-
erations into micro-instruction words/' in
Proc. l l th Annual Workshop on Micro-
programming SIGMICRO Newsletter 9,
4 (Dec. 1978), 51-55.
WooD, W.G. "The computer aided de-
sign of microprograms," Ph.D. dissertation,
Univ. Edinburgh, Scotland, 1979.
YAU, S. S., SCHOWE, A. C., AND TSUCHIYA,
M' "On storage optimization for horizon-
tal microprograms," in Proc. 7th Annual
Workshop on Microprogramming (ACM),
1974, pp. 98-106.

RECEIVED DECEMBER 1979; FZNAL REVISION MARCH 1980; ACCEPTED MAY 1980

Computing Surveys, Vo1.12, NO. 3, S e p t . bet H~0

