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INTRODUCTION 

As the use of microprogramming increases, 
it becomes costly to write microprograms 
in unstructured unwieldy languages. The 
same pressures that led to the widespread 
acceptance of conventional high-level lan- 
guages now apply to microprogramming 
[DAvI78]. The time is long overdue for the 
development of machine-independent, 
high-level microprogramming language 
compilers. 

This work was supported in part by the National 
Science Foundation under Grant MCS 76-01661. 

Microprogrammable processors that  al- 
low simultaneous control of several hard- 
ware resources present special challenges 
to the implementor of a high-level language 
compiler. These horizontal processors must 
have their microprograms compacted in or- 
der to run efficiently. Compaction involves 
choosing from the possible arrangements of 
concurrent activities one that will minimize 
the execution time of the microprogram 
and possibly its size as well. 

The first step in such a compaction is the 
division of the program into branch-free 
segments. The analysis, or local compac- 
tion, of one of these segments is an expo- 
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nentially complex problem, i.e., one that is 
time consuming to calculate. In the past, 
because of this complexity, it was feared 
that  a compiler capable of generating effi- 
cient horizontal microcode would run too 
slowly to be. usable. Because  micropro- 
grams are at the lowest programmable 
level, their efficiency directly affects the 
efficiency of the entire system. 

Recent research [TOKo77, MALL78, 
WOOD79, FXSH79] indicates that  local com- 
paction algorithms can be practical. De- 
spite the theoretical computational com- 
plexity, optima[ or near-optimal results can 
be found in a reasonable (i.e., nonexponen- 
tial) amount of time. Thus one of the major 
obstacles to practical microcode compilers 
for horizontal machines is surmountable. 

This paper surveys the various ap- 
proaches that have been taken for com- 
pacting microcode [RAMA74, TABA74, 
TSUC74, YAU74, DEWx75, AGER76, DASG76, 
MALL78,  WOOD78, FISH79] .  Clear defini- 
tions are presented for the terms required 

to understand this area, since the variations 
in terminology and the lack of a compre- 
hensive vocabulary have constituted a ma- 
jor problem. This paper presents a unifying 
terminology for studying the issues in- 
volved and applies this terminology to the 
different approaches. 

The development of compaction algo- 
rithms in existing literature is based on a 
number of different models of the processor 
environment. These differences make com- 
parison of the algorithms difficult, and 
sometimes model differences are confused 
with the differences in the algorithms them- 
selves. This paper presents a model which 
incorporates the major features of existing 
models, yet avoids unnecessary details. All 
of the algorithms presented are explained 
in terms of this general model. 

Local compaction is a fundamental part 
of any compaction process. There are four 
major classes of algorithms for locally com- 
pacting microcode: linear analysis, critical 
path, branch and bound, and list schedul- 
ing. Each of these classes is explained using 
the terms defined in this paper. A common 
example illustrates the execution of each 
kind of algorithm. There are also detailed 
presentations of two nontrivial support al- 
gorithms which are rarely explained in the 
literature. 

Definition of the Problem 

A microprogram is a sequence of microin-  
s t ruc t ions  (MIs). A microprogram is 
stored in a memory, often a special memory 
called the control store, from which the 
instructions are executed one at a time. 
During its execution, an MI is the control 
.word for its machine. 

Each separate machine activity specified 
in an MI is called a m i c r o o p e r a t i o n  (MO). 
Thus an MI can be characterized as a set of 
MOs. A field is a collection of control word 
bits that controls a primitive machine ac- 
tivity. An MO requires one or more fields 
in order to execute. The format of a control 
word determines how many and which MOs 
can be placed together in an MI. Figure 1 
shows the relationship between fields and 
microoperations in the control word orga- 
nization for a hypothetical machine. If only 

~one or a few MOs can fit into an MI, the 
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(a) 

Field1 Field2 Source Destination 

rno~: ADD d 
too2: MOVE s 
mo3: SHIFTL n 
mo4: SHIFTR n 

where s, d E AC (accumulator), RA (reg A), RB, or SH (shifter); n ~ I. ,4. 
(b) 

MOVE empty 

I ISHIFTL 13R I 
(c) 

FIGURE 1. Example control word organization. (a) 
Microinstruction format. (b) Partial list of microop- 
erations. (c) Two possible microinstructions. 

machine is said to have a ver t ica l  archi- 
tecture. Otherwise it is said to have a 
hor izonta l  a rch i tec ture .  A more detailed 
discussion of control word format can be 
found in DASG79. 

The microcode c o m p a c t i o n  p r o b l e m  is 
as follows. Suppose that for a particular 
machine, the hos t  machine ,  we are given 
a microprogram expressed as a sequence of 
MOs. These MOs are to be placed into MIs 
so that the microprogram execution time is 
minimized. This must be done under the 
restriction that the resulting sequence of 
MIs must be semantically equivalent to the 
original sequence of MOs. "Semantically 
equivalent" means that if both sequences 
are executed, the same input always results 
in the same output. The original sequence 
of MOs is not executable as it stands but 
can easily be made executable by placing 
each MO in a separate MI. Some MOs may 
have to be placed in the same MI as a 
previous MO, as explained in the section on 
coupling. Informally, the problem is to 

"compact" the program into a small mem- 
ory space. 

We discuss microcode compaction for 
horizontal architectures. Although compac- 
tion can be performed for any architecture, 
including a vertical one, the compaction 
problem is only interesting if a useful con- 
currency of MO execution can be achieved. 
Not only are vertical architectures limited 
in their potential concurrency, but  this lim- 
itation is one of the justifications of their 
design. Vertical machines are easier to mi- 
croprogram precisely because they avoid 
the time-consuming and error-prone pro- 
cedure of manually analyzing concurrency. 

In order to analyze possible concurrent 
activity, the microprogram is divided into 
straight-line microcode sections. 

Definition. A straight-Hne microcode 
sec t ion  (ELM) is an ordered collection of 
MOs with no entry points, except at the 
beginning, and no branches, except possibly 
at the end. 
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HLL i '" 
microprogram 

Compile to 
MO level 

G e n e r a t e  MOs 

Apply conventional 
code optimization 

List of 
MOs 

Host MO 
Definition 

Table 

Analyze 
flow of control 

SLMs 
i ! 

(Locally) compact 
each SLM 

List of 
Mls 

IZIOgl~ "2, One poa~)le microcode compilation system. 

SLMs are also known as basic blocks. 
Within ~ SLM, minimizing execution time 
is achieved by  minimizing the number of 
compacted microinstructions. Analysis of a 
single SLM is called local analysis ,  and of 
more than one SLM, global  analysis.  

In global analysis, minimizing the num- 
ber of microinstrUctions does not necessar- 
ily minimize execution time, since some 
SLMs may be executed many more times 

than others. Global analysis is very much 
an active research problem [TOKo78, 
DAso79, WooD79, FzSH79]. Interesting ap- 
proaches based on treating a compacted 
SLM as a primitive in a more global SLM 
are found in WOOD79 and FISH79. Our pa- 
per is confined to the local analysis prob- 
lem, which is examined in detail. 

The role of local compaction analysis in 
a high-leval microprogramming language 
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, I 
COMPACT 
EACH SLM I 

FI(}URE 3. Subalgorithm modules 
BuildDDG and FormCIs are used 

translation system [cf. MALL75] is shown 
in Figure 2. Two relatively distinct analyses 
must be performed as part of the local 
compaction process (see Figure 3). The way 
in which data are passed from MO to MO 
forces some MOs to be kept in the order in 
which they appeared in the original SLM. 
Data dependency ana lys i s  decides the 
partial ordering. Confl ict  ana lys i s  deter- 
mines whether two MOs can fit into the 
same MI without conflicting over a hard- 
ware resource. 

Many of the optimization techniques of 
conventional compilers are applicable to 
microprograms--which is not surprising, 
since a sequence of MOs strongly resembles 
a conventional machine language program 
[KLEI71]. These techniques consist primar- 
ily of code transformations that reduce the 
number or the execution time of MOs in 
sequential form. For the rest of our discus- 
sion we assume that any code transforma- 
tions have already been applied. 

Sometimes compaction is termed hori- 
zontal optimization, but this is misleading 
because conventional compiler optimiza- 
tion is different from compaction and be- 
cause compaction can reduce micropro- 
gram size and execution time without nec- 
essarily minimizing them. Horizontal im- 
provement would be a more accurate term. 

The Minimum Manhole Shifts Analogy 

The reader can gain an appreciation for 
some of the issues involved by considering 
the following analogy, in which the sched- 
uling problems of an underground con~struc- 
tion project are compared to those of local 

Data Dependency 
Analysis 

(BuildDDG) 
i 

Conflict 
Analysis 

(FormCls) 

used by compaction algorithms. 
in most of the approaches. 

microcode compaction. The appropriate 
compaction term is placed in parentheses 
following discussion in the applicable anal. 
ogy. 

Both compaction and this analogy are 
examples of job shop scheduling problems 
[COFF76]. Compaction also bears a direct 
resemblance to the processor scheduling 
problem [GoNz77]. 

The Analogy 

The foreman of a crew working in a man- 
hole has a big job to do. The job entails a 
large number of specific tasks, but there is 
no shortage of workers. There is, however, 
a limited amount of space in the manhole 
and a limited number of tools. The fore- 
man's problem is how to perform a given 
job in the minimum number of shifts. 

The analogy thus far: 

The manhole: an MI or a control store 
word. 

The shift: one MI cycle. 
The job: an SLM. 
The task and its associated worker: an MO. 
The tool: a processor's operational unit 

(ALU, BUS, etc.) 

Some workers' tasks depend on the com- 
pletion of tasks by other workers. The 
foreman must make a list of which tasks 
depend on which other tasks and not send 
a worker down into the manhole before the 
necessary prerequisite tasks have been 
completed (data  dependency). 

Assume for now that  a worker's task al- 
ways takes exactly one shift to complete 
(monophase MI). Thus a worker depend- 
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ing o n  the job  done by another should not 
go into the manhole until the shift ~ r  
that  of the first worker. Of course, the tasks 
of twoworke r s  do not~always involve a 
dependency. I f  this is the case, they can go 
down into the  manhole together, assuming 
there are no other problems between them 
(data independence). 

When can workers with independent 
tasks not be sent down into the manhole 
together? There are two possibilities. First, 
they may require the same tool to do their 
jobs. If there is only one such tool, one 
worker must wait for the next shift (re- 
source unit conflict). Second, the two work- 
ers may not fit into the manhole together. 
This can happen if the two workers must 
work in the same place (at an exposed water 
pipe, for instance) in the manhole (mi- 
crooperation field conflict). 

Now, w h a t  i f  the assumption that each 
worker needs an entire shift is unrealistic? 
Suppose that some workers need only part 
of a shift to perform their .t~ks (polyphase 
MIs). A union rule states that a worker 
must stay in the manhole during the entire 
eight-hour shift, but  also that a worker may 
be idle some of that  time. Consider two 
workers  with independent tasks who need 
the same tool.• I f they  can work at separate 
times, one can use the tool for the first few 
hours, the other, for the remaining :hours. 
Thus two workers who need the same tool 
during different par t s  of the shift can be 
sent into the manhole together (resource 
unit compatibility). They still must fit to- 
gether in the manhole, however (mieroop- 
eration field compatibility). 

Suppose worker 2's task can only be per- 
formed after the completion of worker l 's 
task. If worker 1 starts in the morning and 
takes two hours to finish and worker 2 
needs four hours, they can be sent into the 
manhole together, worker 2 waiting until 
worker 1 is finished. Thus, assuming that 
the workers can fit together in the manhole, 
they can~ be sent down together (weakly 
dependent MOs): 

Now, let worker 3 perform a delicate task, 
such as cleaning a joint in preparation for 
welding. Worker 4 does the welding. If the 
cleaned joint is left overnight, it gets dirty 
again, and the job must be redone. There- 
fore worker 4 must be sent into the manhole 

on the same shift as worker 3 (coupled 
MOs). The foreman decides to simplify the 
analysis of task dependencies by consider- 
ing two or more inseparable tasks as one 
task with multiple workers (Me bundles). 

Some tools may be multifunctional. A 
drill can be used for drilling or modified and 
used for polishing, but  a polisher can be 
used only for polishing. If worker 5 needs a 
drill and worker 6 a polisher, worker 6 
should be given the polisher, not the drill/ 
polisher. The foreman should tell the work- 
ers which tools to use, thus eliminating this 
kind of conflict (versions of resource units). 
Similarly, ff worker 7 can work either in a 
corner or by a wall (needing access to pipes, 
say), and worker 8 can work only on a 
junction box in a corner, worker 7 should 
be told to work by a wall (versions of mi- 
crooperation fields). 

These are some of the issues the foreman 
must contend with when attempting to 
minimize the  number of shifts required to 
complete a job. 

The manhole analogy makes the sched- 
uling nature of the local compaction prob- 
lem clear. The terms in parentheses are 
explained in the appropriate sections of this 
paper. The reader should refer to this anal- 
ogy when studying these terms. 

How This Paper Is Organized 

Many of the sections in this paper are ex- 
planations of algorithms. Although the de- 
tails of an algorithm can be skipped without 
a serious loss of understanding of subse- 
quent sections, it is crucial to understand 
the problem that each algorithm is designed 
to solve. 

Section 1 analyzes the data dependency 
problem and presents an algorithm for 
building a data dependency graph from an 
SLM in sequential form. Section 2 explains 
a model of processor behavior and shows 
how it can be used to detect conflicts in 
resource usage. Section 3 examines an al- 
gorithm that uses this model to form mi- 
croinstructions. Finally, Section 4 presents 
examples from each of the four classes of 
compaction algorithms and discusses the 
computational complexity of each class. 

Little or no prior knowledge of micropro- 
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gramming is needed in order to understand 
this article. 

1. DATA DEPENDENCY ANALYSIS 

Data dependency analysis is the first step 
performed in the local compaction process. 
It is based on an examination of the input 
and output resources of each microopera- 
tion. 

1.1 The Definition of Data Dependency 

Most of the microoperations of a given ma- 
chine operate on registers .  A register 
whose value is used by an MO is called an 
inpu t  storage resource or an input operand. 
Similarly, a register whose value is changed 
by an MO is called an ou tpu t  storage re- 
source or an output operand. ("Source" is 
often used instead of "input" and "sink" or 
"destination" instead of "output.") 

As long as the number of variables used 
in the entire microprogram (not just one 
SLM) does not exceed the number of reg- 
isters available, a register is essentially a 
variable. Assume for now that this is the 
case; the problem of reallocating registers 
is discussed in Section 4.6. 

Given an SLM to be compacted, the final 
list of MIs must be "semantically equiva- 
lent" to the SLM in the sense that both 
must produce the same results when given 
the same input values. If they are not se- 
mantically equivalent, data integrity has 
been violated. Some of the MOs cannot 
change their order of execution without 
producing different answers. In particular, 
the order of two MOs cannot be changed if 
they satisfy the following definition. 

Def in i t ion .  Two MOs, moi and moj, 
have a data interact ion if they satisfy any 
of the following conditions (assuming that 
moi precedes moj  in the original SLM): 

(1) An output resource of moi is also an 
input resource of moj  (if moj  were first, 
it would have an old value in its input 
resource, one that should have been 
updated by moi but was not). 

(2) An input resource of moi is also an 
output resource of moj  (if moj  were first, 
it would be able to change the value 
that  moi was expecting as input before 
moi  had a chance to use it). 

(3) An output resource of moi  is also an 
output resource of moj  (if moy were first, 
moi would be able to overwrite moj 's  
output value, when m o f s  value is the 
one that  should remain after both MOs 
are finished). 

The definition of data interaction can be 
applied to any two MOs without reference 
to their order in the original SLM. Section 
2 presents a representation for the input 
and output resources of MOs that  allows 
data interaction to be tested by examining 
set intersections. 

The remainder of our development of 
data dependency analysis rests on the fol- 
lowing assertion. 

A compacted list of MIs will be semanti- 
cally equivalent to its original SLM if, for 
every two MOs in the MI list that have 
a data interaction, the MO occurring ear- 
lier in the SLM finishes with each of the 
resources causing the data interaction be- 
fore the later MO starts to use it. 

Several definitions are based on this as- 
sertion, as shown in the following. 

Def in i t ion .  Given two MOs, moi and 
moj, where moi  precedes moj  in the SLM, 
then these MOs are o rde r  p re se rv ing  if 
their execution in the same MI obeys the 
following rule (assume it is otherwise pos- 
sible): For each resource causing a data 
interaction between them, moi  finishes with 
that  resource before moj  starts to use it. 

If two MOs are order preserving, they 
can be in the same MI without violating 
data integrity. If an MO is order preserving 
with respect to every MO in an MI, it is 
order preserving with respect to that MI. 

The next definition defines a partial or- 
der over the MOs. 

Def in i t ion .  Given two MOs, moi and 
moj,  where moi  precedes moj in the original 
SLM, moj  is d i rec t ly  d a t a  dependen t  on 
moi {written moi ddd  moj) if the two MOs 
have a data interaction and if there is no 
sequence of MOs, mokl,  rook2 . . . .  , mok , ,  n 
-- 1, such that  moi ddd  mokl,  mokl  ddd  
r o O k 2  . . . . .  roOk(n-l) ddd  mokn, mOkn ddd  moj. 

The second part of the definition ensures 
that two directly data-dependent MOs will 
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have no "chain" of directly data-dependent 
MOs between them. 

Data dependency is the transitive closure 
of the direct data dependency relation. 

Definition. Given two MOs, moi and 
moi,  mo~ is data dependent on mo~ (writ- 
t e n  mo~ dd moj) if 

moi ddd  mo# 

or if there exists an Me ,  rook, such that 

moi ddd  rook and rook dd  moj. 

If mo~ dd  moj, then moj cannot execute 
before moi without violating data integrity. 
Usually they cannot execute in the same 
MI either; this situation is discussed in the 
next section. Two MOs that  are not data 
dependent are said to be d a t a  indepen-  
dent .  It should be clear that data indepen- 
dence implies order preservation. 

Suppose a list of MIs is being constructed 
from an SLM and the MOs in the SLM are 
being considered one at a time. The data 
dependency concept is used to determine 
whether adding a particular M e  to a par- 
ticular MI in the list will violate data integ- 
rity. If the answer is no, the M e  is said to 
be d a t a  ava i lab le  with respect to that MI. 
Data availability is discussed more formally 
in the next section. 

The direct data dependency relation de- 
fines a partial order over the MOs of an 
SLM. The representation of this ordering 
in graph form is called a d a t a  dependency 
g r a p h  (DDG). Each node on a DDG, node 
i say, corresponds to a unique MO in the 
SLM, moi. If there is a link from i to j on 
the graph, then mo~ ddd  moj. The definition 
of direct data dependency ensures that  this 
link is the only path in the graph from i to 
j. Figure 4 shows a simple DDG where mol 

• D. Landskov ,  S. Davidson,  B. Shriver,  P. W. Mal l e t t  

(1) 
/ 

(2) 

(3) 
FIOUBE 4. A data dependency graph. 
Nodes I and 3 cannot be linked. 

ddd mo2 and mo2 ddd  too3. There cannot 
be a link between node 1 and node 3 be- 
cause they are already linked indirectly. 

Many compaction algorithms use a DDG 
of the SLM as input (see Section 4). A well- 
designed microcode compilation system 
might have the code generator produce the 
MOs in graph form. Otherwise, the first 
step of compaction is to form a DDG from 
the SLM. 

1.2 Extending the Data Dependency 
Concept 

There are several machine features that  
can be incorporated into data dependency 
analysis. 

1.2.1 Finishing with a Resource Before the 
End of a Cycle 

Sometimes an M e  does not affect machine 
resources during the entire time that the 
machine allows an MI to execute (i.e., the 
instruction cycle time). In Section 2, a no- 
tation for specifying the parts of an MI 
cycle in which an M e  executes is devel- 
oped. If mo~ and moi are in the same MI, 
and if moi finishes executing before moj 
begins, then data integrity is preserved even 
i f  me# is data dependent on moi. This mo- 
tivates the following definition. 

Definit ion.  Given two MOs, moi and 
moj, then moj is w e a k l y  d e p e n d e n t  on moi 
(moi w d  moj) i f  moj  is directly data depen- 
dent on moi, and if for every resource caus- 
ing a data interaction between them, moi 
finishes with that resource before me~ starts 
to  use it. 

Clearly, taking advantage of weak de- 
pendencies makes compactions with fewer 
MIs possible, since two MOs related by a 
weak dependency may be able to fit into 
the same MI. In DASO76, the term "condi- 
tionally disjoint" is almost a synonym for 
weakly dependent (the difference in mean- 
ing arises from model differences and is not 
significant). If moi ddd  moj, and it is known 
that moi is not weakly dependent on mo~, 
then moi is strongly dependent on mo~ 
(moi sd moy). If MOs are placed in a list of 
MIs so that the MOs are order preserving, 

mo~ sd moj implies mo~ < moj 
mo~ wd moj implies mo~ <_ me~ 

The weak dependency concept allows a 
more precise analysis of some of the M e  
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relationships. One conclusion that can be 
drawn is 

If two MOs are data independent, or if 
one is weakly dependent on the other, 
then they are order preserving. 

These are the only two conditions consid- 
ered here which allow two MOs to fit into 
the same MI and still preserve data integ- 
rity. 

The term d a t a  avai lable  applies when 
a list of MIs is considered instead of just an 
individual MI. We observe that  

Given an SLM of MOs, and a list of MIs 
constructed from some of these MOs, moi 
is called data available with respect to 
mij if 

(1) every MO in the SLM on which moi 
is data dependent appears in an MI 
which is above mij in the list, or ap- 
pears in mij itself, and 

(2) moi is not strongly dependent on any 
MO in mij. 

Item 2 is a rewording of order preservation. 
Notice that  this definition applies even if 
mi~ is empty, or if the list of MIs has no 
other elements. 

•.2.2 Transitory-Data Resources 

One particular kind of weak dependency 
has a special importance. The example in 
Figure 5 depicts an MI sequence in which 
mol, too2, and mo3 combine to take the data 
stored in register A1 and move (gate) it 
through latches 1 and 2 to register A2. 

Registers A1 and A2 are examples of 
s ta t ic  resources. A static storage resource 
is one whose contents are maintained in- 
definitely until explicitly overwritten by the 
execution of an MO. A transitory-data 
storage resource is any storage resource 
that  is not static, that is, one whose con- 
tents can become undefined at the termi- 
nation of an MI in which it has been given 
a value. Latches are examples of transitory- 
data resources. 

Two MOs are said to be d i rec t ly  cou- 
pled if one of them passes data to the other 
through a transitory-data resource. Two 
MOs are said to be coupled if a sequence 
of MOs exists such that  one of the two MOs 

mo~: Input ffi A1, Output - Latchl 
i (MOs activating devices that  use 

the contents of Latch1) 
mo2". Input ffi Latch1, Output ~ Latch2 

: (MOs activating devices that  use 
the contents of Latch 2) 

mo3: Input ffi Latch2, Output ffi A2 

FIGURE 5. MOs coupled through 
transitory-data resources. 

is the first element of the sequence, the 
other is _the last, and each element of the 
sequence is directly coupled to its adjacent 
elements. Coupled MOs must be placed in 
the same MI to work properly. Coupling 
can occur in a variety of microprogram 
instruction sets [AGRA76, SHRI73]. 

It is the authors' experience that  the only 
way to accommodate coupling in the com- 
paction algorithms without causing serious 
confusion is to incorporate coupling into 
the definitions of the MO-to-M0 relation- 
ships. This can be done using the concept 
of bundling. 

Definition. A mic roope ra t ion  bund le  
(MB) is a set of MOs, all of which are 
coupled to one another. 

Thus every MO in an MB must go into 
the same MI because of the nature of tran- 
sitory-data resources. 

The SLM is changed from a list of MOs 
to a list of MBs by putting coupled MOs 
into the same MB and by putting each 
uncoupled MO into its own MB. All of the 
relations over MOs can be defined over 
MBs in a straightforward manner. For ex- 
ample, mbj is data dependent on mbi (mbi 
dd mbj) if there exists an moi in mbi and an 
moj in mbj such that  moi dd  moj. 

After the MB relationships are defined, 
the compaction algorithms can operate 
with MBs just as they previously operated 
with MOs. The nodes of a D D G  are now 
MBs, and compaction algorithms change 
an SLM of MBs into a list of MIs. An MI 
is now a set of MBs. 

For the rest of this paper we discuss 
compaction in terms of MBs. When relating 
this paper to other papers that  do not dis- 
cuss coupling, the reader may substitute 
the word microoperation for microopera- 
tion bundle. 
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1.2.3 Multicycle Operations 

In many mach ines  there are microopera- 
tions which need more than one instruction 
cycle to exJ~cute. Amain  memory reference 
is a common example of such a multicyc!e 
operation. An MB which is data dependent 
on an MB containing a multicycle operation 
must be d e l a y e d  the proper number of 
cycles following the multicycle MI's start- 
up. This is easily accomplished in data de- 
pendency analysis by using d u m m y  mi- 
crooperation bundles .  An operation re- 
quiring n cycles to execute is represented 
by a sequence of n MBs, each one data 
dependent on the previous MB in the se- 
quence. The first MB has all Of the input 
and output resources of the operation; the 
others are dummies which use the delayed 
output resources of the operation for both 
input and output. Figure 6 shows an ex- 
ample DDG where  mbl has a three-cycle 
operation. Nodes la  and lb  represent 
dummy MBs. 

(1) 
I 

( l a )  
( 2 )  I " 

k ( l b )  
I 

( 3 )  

FIGURe. 6. A data dependency 
graph with a three-cycle mi- 
crooperation. 

• D. Landskov, S. Davidson, B. Shriver, P. W. Mallett 

Although dummy MBs do not corre- 
spond to actual microoperations, an MI 
containing only dummy MBs has to be 
created as a no-operation (NOOP). Such a 
NOOP indicates that the machine has noth- 
ing else to do while waiting for the comple- 
tion of a multicycle operation. Global anal- 
ysis can eliminate NOOPs at the end of an 
SLM by moving the corresponding dummy 
MBs to all the SLMs that can execute 
immediately after this one [MALL78]. 

1.3 Forming a Data Dependency Graph 

Few of the compaction articles referenced 
by this paper define an algorithm for con- 
structing a data dependency graph from a 
list of MBs (or MOs). Although algorithms 
of this kind exist, they are not widely known 
and have not been explained in terms of the 

mi'crocode compaction problem. Thus the 
following algorithm should be of general 
interest.  

The algori thm presented (BuildDDG) 
cor~structs t h e g r a p h  o n e  MB at a time, 
starting with the first MB in the list and 
proceeding through the list in sequential 
order. Each MB is added as a new node to 
the graph formed by the MB's predecessors 
in the list. Then the graph is searched to 
find which nodes should be linked to this 
new node. We say that we are adding the 
"current MB" to the "current graph." 

The directed graph is defined in a con- 
ventional way. "Node A is a parent of node 
B" means that  "B is directly data depen- 
dent on A"; we write node A above node B 
with a link, or line, connecting them. The 
nodes without parents are the roots ,  and 
are drawn at the top of the graph. The 
nodes with no children are the leaves .  A 
path is a sequence of distinct nodes, each 
of which is a parent to the next node in the 
sequence. Node A is an a n c e s t o r  of node 
B if a path exists from A to B. 

While adding the current MB to the 
graph, we test an MB already in the graph 
(a graph MB) to see if the current MB is 
data dependent on it. Whenever the test 
indicates a data dependency, a link is 
formed. Each graph MB needs to be tested 
once at most when adding the current MB. 
The data interaction part of the test can be 
performed by looking at only the two MBs 
involved. However the definition of direct 
data dependency tells us when data inter- 
action does not imply direct data depend- 
ency. We can restate this part of the defi- 
nition as follows: 

If the cu r r en t  microoperation bundle, 
mbk, is directly data dependent on a mi- 
crooperation bundle, mbj, then mbk can- 
not bed i r ec t l y  data dependent on an 
ancestor of mbi. 

It immediately follows that a graph-MB 
should not be linked if it is an ancestor of 
the current MB. Such links are not formed, 
and the unnecessary testing of such MBs 
for data interaction is avoided by observing 
the following rule: 

Data lnteraction Testing Rule. A graph 
MB is tested for data interaction with the 
current MB if and only if all of  the graph 
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I ddd 2, I ddd 6, 4 ddd 5. 
I ddd 4, 3 ddd 6, 

i 

t~ext 
ddd? Action 

no 

no 

no 
yes 

no 

no 

yes 

no 

no 

5 no 
4 no 

I yes 

3 yes 

Add node for 3; 
Test next leaf (2). 

Check 2's parents. 
(No parent); Next MB. 

Add node for 4; 
Test next leaf (2). 

Check 2's parents. 
Form link from I to 4; 

Test next leaf (3). 
(No parent); Next MB. 

Add node for 5; 
Test next leaf (2). 

(2's parent has untested 
child, 4); 
Test next leaf (4). 

Form link from 4 to 5; 
Test next leaf (3). 

(No parent); t~ext MB. 

Add node for 6; 
Test next leaf (2). 

(2's parent has untested 
child, 4); 
Test next leaf (5). 

Check 5's parents. 
Check 4's parents (1's 

children now verified) 
Form link from I to 6; 

Test next leaf (3). 
Form link from 3 to 6; 

Stop (out of gBs). 

271 

(I) (3) 

/ 1 \ /  
(2) (4) (5) 

I 
(5) 

Resulting 
Data Dependency Graph 

FIGURE 7. Example of formation of a data dependency graph. 

MB's children are verified nonancestors of 
the current MB. 

By following this rule a positive test for 
data interaction implies direct data depend- 
ency. 

Now an algorithm that searches for graph 
nodes on which the current MB is directly 
data dependent can be specified. A search 

progresses upward from each leaf, since 
each leaf automatically satisfies the testing 
rule. If the test of an MB for data interac- 
tion is positive, then a link is formed to the 
current MB. If the test is negative, then 
that MB has been verified as a nonancestor 
of the current MB. Each of its parents is 
informed that another child has been veri- 
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fled. Each parent is also checked to see if it 
now satisfies the testing rule. If it does, then 
the parent is tested..Searching ends when 
there are no more MBs to be tested. 

Figure 7 shows the formation of a data 
dependency graph from an SLM of six 
MBs. The direct data dependencies which 
should be detected by the algorithm are 
listed at the top of the illustration. The 
algorithm starts by placing mbl in the 
graph. Then mb2 becomes the current MB. 
Since mbl is a leaf of the  current graph, it 
is tested against mb2 for data interaction. 
The test is positive and a link is formed. No 
more MBs remain to be tested, so mb~ 
becomes the new current MB. Refer to 
Figure 7 for a trace of the rest of the exe- 
cution. 

The resulting data dependency graph 
shows that it is not possible for mb5 to be 
directly data dependent on mb~ (since they 
are indirectly linked on the graph), even 
though there may be a data interaction 
between them. The algorithm did not per- 
form the needless test for this data inter- 
action. Notice also that the algorithm 
searches parents (and leaves) from left to 
right. The order in which parents are 
searched makes no difference. The searches 
could proceed in parallel. 

No reference has been made yet to the 
data structure used to represent the graph. 
Any structure capable of representing a 
directed graph will work. An adjacency ma- 
trix where DDG~ -= true means mbi ddd 
mb~ is a reasonable choice. 

2. DESCRIBING THE HOST MACHINE 

Section I examined the ordering that must 
be preserved while placing microoperation 
bundles into microinstructions. There re- 
mains the question of the restrictions im- 
posed by the host machine itself. Two MBs 
cannot be placed in the same MI if they 
both need exclusive control over the same 

• resource at the same time. Such a situation 
is called a conflict. For example, usually 
two MBs cannot use the same ALU at the 
same time. 

To be able to detect conflicts, a compac- 
tion algorithm must operate within the 
framework of a machine model. More pre- 
cisely, this framework should be a model of 
a machine control word, since control word 

Comp,t~S,rvey~VoLla, No.a, S e l ~  " 19S0 

behavior defines the legality of an MI. This 
model should have the following properties. 

Machine independence. The model 
should be applicable to a variety of physical 
machineL Table-driven models can isolate 
machine-dependent information, such as 
the host instruction set or the number of 
resources of a given type. In any case the 
data structures used by the compaction 
algorithms should be general. 

Manageability.The data structures used 
by the model should support clear, well. 
structured design. Appropriate primitives 
should be defined and used in the code. The 
model should not contain hardware details 
unnecessary for the execution of the algo- 
rithms. Efficiency should also be consid- 
ered, since some potential uses of the model 
involve computations of exponential com- 
plexity. 

Completeness. The model must be able 
to represent real-world machines. This im- 
plies that some machine features ignored in 
the past will have to be supported by the 
model. Designing a simple model and add- 
ing extensions later can have disastrous 
effects on its manageability. 

In the following sections we present a 
model which is a synthesis of most of the 
models in the literature [I~EI74, DAsQ76, 
DEW176, MALL78, RAMA74, YAU74]. This 
model demonstrates that the above goals 
can be (and have been) met. Several fea- 
tures of this model contribute to its com- 
pleteness. One previously mentioned is the 
ability to represent microoperatious that 
are not active throughout an entire MI 
cycle. A machine that supports such MOs 
is said to have polyphase timing. Many 
compaction algorithms deal only with 
monophase timing [DEWI76, RAMA74, 
YAU74]. Another important feature of the 
model we are presenting is the ability to 
delay resource binding until MIs are 
formed, that is, until the compaction pro- 
cess. Some models do this for registers only 
[DEWI76]. The binding concept allows an 
MO to have a choice of other kinds of 
resources as well. 

This model is not claimed to be the best 
choice for all compaction problems but is 
offered to demonstrate the feasibility of 
describing a variety of realistic machine 
features. Although coding details are not 
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m__oo[i] : <ADD, {A, B}, Latchl, ADDERI, Phase2, Field1> 

explanation: Latchl <- A + B; 
Adder ADDERI is used to add the contents of its two 
input registers A and B. The results are placed in the 
register Latchl. Execution occurs during clock phase 
2. The encoding for the MO is contained in MO field 
Fieldl. The name of the MO is "ADD." 

m_~o[j] : <MOVE, A, B, BUS, PhaseO, Field2> 

explanation: B <- A; 
Using the bus BUS, data is gated from register A to B. 
Execution is at clock phase PhaseO and the MO's 
encoding is in MO field Field2. 

mo[k] : <JUMP, empty, empty, CSAU, PhaseS, 
{Field5, Field6:"9"}> 

explanation: Unconditional Branch; 
The Control Store Address Unit (CSAU) uses the 
immediate data (9) contained in MO field Field6 as 
the target address for the branch. Execution occurs at 
Phase5, and Field5 contains the encoding of the MO. 
Ho input or output resources are required. 

i 

m~o[l] = <SHIFT, ShiftA, ShiftA, SHIFTER, Phase3, Field3> 

explanation: ShiftA <- SHIFTER(ShiftA); 
The shifter SHIFTER is used to shift the contents of 
register ShiftA. Execution is during clock phase 
Phase3. The encoding occupies MO field Field3. 

FIGURE 8. Examples of MO tuple representation. 

presented here, implementations of the fea- 
tures do exist [MALL78, WOOD78, FISH79]. 

2.1 Microoperation Tuples 

The MO is the most primitive activity ac- 
commodated in our model. An MB is rep- 
resented as a set of MOs. The semantics of 
an MO are represented by a six-tuple, 
(name, I, O, U, T, F), where the tuple 
elements are 

(1) name--an identification of the MO to 
be performed, 

(2) I - - the  set of all storage resources whose 
contents are required by the MO as 
input, 

(3) O-- the  set of all storage resources into 
which the MO places output, 

(4) U-- the  set of all functional units re- 

quired by the MO while the MO is 
executing, 

(5) T- - the  set of processor clock phases 
required for MO execution, and 

(6) F-- the  set of all microinstruction fields 
required by the MO (they contain the 
encoding of the MO and possibly im- 
mediate data). 

Elements 2 through 6 are known as tuple 
sets. Figure 8 shows examples of four MOs 
with their tuple sets enumerated. Note that 
the "{" and "}" braces are not written 
around singleton sets. An MI is a group of 
MOs contained in one word of control store. 
The execution time for one MI  is called the 
instruction cycle t ime and may consist of 
several subcycles cal led clock phases. A 
microprogram is an ordered list of MOs or 
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MIs which real i~ the logic of a particular " ular binding upon all Orlists within a tuple 

The six-tuple specification of M0  sen;an- 
tics is a machine-independent representa- 
tion o f a  mic/ooperation: When t h e  MO s 
and resources of a particular machine are 
enumerated in this format, the representa- 
tion becomes tailored to that machine. The 
tuple is used by a code compaction algo- 
rithm to  detect conflicts and analyze re- 
source usage between MOs. 

The definition of the individual sets of 
the six-tuple, as given in Figure 8, is not 
complete. We extend it to take into account 
r e s o u r c e  al locat ion.  The tuple se ts  are 
considered to be b o u n d  or u n b o u n d  with 
respect to their allocated processor re- 
sources. An unbound set contains, as ele- 
ments, the enumeration of all possible re- 
sources that  can be allocated to the set. A 
bound set contains, as elements, those re- 
sources that were actually assigned to the 
set. Consider the following unbound Unit 
set (Uset). 

Ui ffi (ALU1 or ALU2} 

This set is characterized as unbound by its 
"or" operator, which indicates an Orlist .  
The Orlist signifies that at some point be- 
fore the MO can be executed, achoios must 
be made as to which hardware resource will 
be assigned to beused  by the MO. An Orlist 
in which the assignments have been made 
(i.e., the Orlist has only one item in the list) 
is a v e r s i o n o f  the set. For example, bind- 
ing the foregoing User generates two bound 
Orlists and thus two versions of the Uset: 

U ~ e r l  = {ALUI) U ~ e r 2  = (ALU2) 

Another resource allocation grouping is 
the Andlist ,  which groups one or more 
Orlists in an unbound or bound tuple set. 
Consider an example o f an  unbound Uset: 

U j  = ((ALU1 or ALU2), 
(ALU3 or ALU4)) 

The Andlist indicates that  one unit must be 
assigned from each Orlist. One version of 
Uj  is 

: UjVer l  ffi (ALU1, ALU3) 

Tuple sets are either bound or unbound 
sets. Resource allocation imposes a partic- 

The elements of a field set (Fset) specify 
the MI  fields used for storage of the encod- 
ings of the MOs and immediate (literal) 
data. Immediate data are data that  an MO 

n e e d s  available ~within the same MI. An 
example of an Fset is 

Fi = {Field1 or Field2) 

An MO with this field set would require one 
of the two fields, "Field1" or "Field2," to 
store the bit encoding of the MO. Next we 
have an MO that, in addition to a control 
field, requires that "Field5" contain the 
decimal constant "8" to be used as imme- 
diate data. The Fset of such an MO might 
look like 

Fj  = (Fieldl, Field5 ffi "8") 

2.2 Relationships Between Tuples 

Using the tuple set model to detect resource 
conflicts is done primarily by testing for 
non_null set intersections. Consider the fol- 
lowing definitions. 

Two MOs are un i t  compa t ib l e  if their 
Usets are disjoint or if their Usets are not 
disjoint but  their Tsets are disjoint. 

This definition simply states that a unit 
cannot be used by two different MOs at the 
same time. 

Two MOs are field compa t ib l e  if their 
Fsets are disjoint or if all of the common 
elements of their Fsets contain the'same 
value. 

Since the use of a field lasts an entire in- 
struction cycle, timing sets need not be 
considered. The last clause of the definition 
allows two MOs to share the same literal 
value. For example, two field-compatible 
MOs might both need a "5" in Field9. Not 
only does our model allow two MOs to 
share a literal, there is no way to prevent 
them from sharing one. With most ma- 
chines this would cause problems. An ex- 
tremely flexible representation of field se- 
mantics can be found in DEW176. 

For  the use of registers to be conflict-free, 
the same register cannot be used by two 
MOs at the same time, unless both MOs 
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are reading. But this is just the negation of 
data interaction, with a timing considera- 
tion added: 

Two MOs are da t a  compat ib le  if there 
is no data interaction between them, or 
if their Tsets are disjoint. 

Notice that  this definition applies to two 
dependent MOs which execute at separate 
times in the MI cycle, but in the wrong 
order. Thus data compatibility does not 
imply order preservation. It is easy to ver- 
ify, however, that if two MOs are order 
preserving, they are also data compatible. 

If two MOs are unit compatible, field 
compatible, and data compatible, then they 
are said to be resource  compatible .  In 
this model, resource compatible implies 
conflict-free. 

Two MOs which are order preserving and 
conflict-free are defined to be paral lel .  
Parallel MOs can be placed in the same MI. 
During the construction of a list of MIs 
from an SLM, an MO which is data avail- 
able to an MI in the list and is also resource 
compatible with that MI is said to be c o m o  
pac tab le  into that MI. The word compos- 
able has been used synonymously with 
compactable. 

3. FORMING COMPLETE INSTRUCTIONS 

An algorithm for forming complete instruc- 
tions (CIs) examines a set of microopera- 
tion bundles and constructs conflict-free 
microinstructions from them. The resource 
conflicts are detected using a control word 
model such as the one discussed in Section 
2. An MI is complete  with respect to a set 
of MBs if no other members of the set can 
be added to the MI; otherwise it is incom- 
plete. An algorithm that forms complete 
instructions is used in some form by all of 
the compaction algorithms in Section 4 ex- 
cept the linear algorithm. 

A particular algorithm (FormCIs) is pre- 
sented in the following two subsections. 
FormCIs builds combinations of MBs from 
the input set by examining one MB at a 
time. Each MB is alternately considered as 
included in or excluded from the combina- 
tion. A combination can be rejected be- 
cause of (1) resource conflict or (2) incom- 
pleteness. 

As seen in Section 3.2 the algorithm pre- 
sented here is not the only possible ap- 
proach, but it is consistent with our model, 
and a good demonstration of the model's 
use. 

3.1 The FormCIs Algorithm 

FormCIs is applied to a set of data-available 
MBs, which are called the Dset. Since the 
MBs are known to be data available, only 
units and fields need to be checked for 
conflicts. However weakly dependent chil- 
dren of MBs in the Dset may be added to 
an MI if their parents are added--as ex- 
plained in the following. 

Given a Dset, FormCIs generates all pos- 
sible complete instructions from it. Each 
MB in the ]:)set can be either included in or 
excluded from the instruction currently 
being generated. If its inclusion or exclusion 
is not yet decided, the MB is said to be a 
r e m a i n i n g  MB. The set of all remaining 
MBs is called the r e m a i n i n g  Dset  
(RDset). An instruction for which remain- 
ing MBs exist is said to be a pa r t i a l  in- 
s t ruct ion.  An instruction under construc- 
tion is considered a partial instruction until 
the disposition of all MBs has been decided. 

We wish to detect when a partial instruc- 
tion is incomplete. A useful concept is that  
of the subins t ruc t ion .  A partial instruc- 
tion is a subinstruction to an instruction if 
the union of the partial instruction and all 
MBs that  can potentially be added is a 
subset of the instruction. The only MBs 
that can be added ar e the remaining MBs, 
unless adding weakly dependent MBs is 
allowed. This possibility is discussed in Sec- 
tion 3.1.2. 

As an example of the subinstruction re- 
lation, suppose that  

I1 ffi {1, 2, 4 )  

is a microinstruction and that 

PI1 = {1} 

is a partial instruction associated with the 
remaining Dset 

RDset ffi {4} 

In this case, PI1 is a subinstruction to I1 
because the union of PI1 and RDset, (1, 4}, 
is a subset of I1. 
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A pineal instruction that is a sub'mstruc- 
tion to a /previously- generated ~, c o / ~ e t e  
instruc~n wa! he iacoaqdete under any 
disposition of its r e m ~  MB~A pa/h'al 
instrUction that  is not a subinstruction to 
any known complete instruction is said to 
be potent ial ly oomplete, ~ - • 

The set of compete  instructions is 
formed by repeatedly applying the proce- 
dure outlined in the following. 

FormCIs 
(1) Let I represent the current partial in- 

struction. I is initially empty and the 
remaining ]:)set is initially equal to the 
Dset. 

(2) Pick an MB from the remaining Dset. 
Consider including this MBin  I, possi- 
bly in more than one version, If it does 
not conflict with an MB already in I, 
reapply this procedure with this MB in 
I (once for each version)J 

(3) Then consider excluding the MB from 
I. If this does not make I a subinstruc- 
tion to an already found complete in- 
struction, reapply this procedure with 
this MB excluded from I. 

(4) If the remaining Dset is, empty, select 
I to be a generated instruction. 

FormCIs generates all combinations of 
the MBsin the Dset except those having 
conflicts and thoSeknown to be incomplete. 
Thus all complete instructions will begen- 
erated. It is not immediately obvious that 
each instruction is guaranteed to be  com- 
plete. This is, in fact, the case; the CI "purg- 
ing extension" presented in Section 3.1.2 
makes proving completeness trivial for the 
fun a~orithm. 

Besides conflict and incompletenebs, 
there is one other case where a partial 
instruction does not require exhaustive ex- 
amination of its remaining Dset. Suppose 
that a complete instruction has just been 
generated and consider the last MB that 
was excluded from this instruction (if any). 
All MBs selected after the last excluded 
MB were found conflict-free. Any other 
disposition of these MBs could not possibly 
lead to an  instruction with a different MB 
in it. Thus, whenever a complete instruc- 
tion is generated, the examination of partial 

~ t ruc t ion  combinations backs up to the 
last excluded node. 

If desired, the rest of Section 3.1 can be 
skipped on first reading. 

3.1. i Introductory Example of FormCIs 
Execution 

The execution of the FormCIs algorithm 
forms a tree. Each node on the tree corre- 
sponds to an MB picked for inclusion or 
exclusion. The first of these, an "include 
node," is drawn as the name of the MB in 
parentheses. The second, an "exclude 
node," is drawn as the name of the MB in 
square brackets surrounded by parenthe- 
ses. The tree is referred to as a FormCIs 
tree. An instance of a node is also repre- 
sented numerically by two digits separated 
by a decimal point. The first digit indicates 
the vertical position of a node counting 
ascending from 1. The second digit repre- 
sents the horizontal position of a node 
counting ascending from 1. The Check- 
NextMB procedure, shown in a later dia- 
gram, corresponds to a node on the tree. 
The tree is created in depth-first, left-to- 
right order. Notice in Figure 9 that the 
partial instruction at a node is identified by 
the path from the root to that node. In- 
structions are written as a list of MBs de- 
limited by commas. Excluded MBs are also 
shown because they can be used in checking 
completeness. The final instructions pro- 
duced by this algorithm are a set of in- 
cluded MBs. 

Figure 9 is an introductory example of 
t h e  formation of complete instructions. 
Suppose the Dset contains three MBs: 1, 2, 
and 3. Furthermore, assume that 1 conflicts 
with 2 (1 c 2) and that 1 conflicts with 3 (1 
c 3). For this example, it is not important 
to know what resources cause the conflicts. 
We now examine the execution of the al- 
gorithm, one tree node at a time. 

First, MB 2 is picked arbitrarily and in- 
cluded in I, the current partial instruction 

• (node 1.1). Then MB 1 is picked for inclu- 
sion in I, but 1 conflicts with 2, and so we 
are finished with this node (node 2.1). Next 
1 is considered as excluded from I (node 
2.2). There are not yet any selected instruc- 
tions to compare with I, so I is potentially 
complete. Now MB 3 is picked and checked 
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_ _  

(2) 
/ 

(I) 
c2 

\ 
([i]) 
/ b 

(3) L 
FormCIs Tree: - - \  

([2]) 
/ \ 

(i) ([I]) 
/ \ i 

(3) ([3]) 
ci i 

Selectedls 

ii {2, [I], 3} 

2 {[2], I, [3]} 

MBs: 1, 2, 

Conflicts: I c 2, 
1 c 3. 

Where: c - conflict, 
i - incomplete, 
b - backup. 

Execution Trace: 
Con- 

Node MB flict? Dset 
0 - - {1,2,3} 
1.1 2 no {1,3} 
2.1 I yes 
2.2 [I] n 9 {3} 
3.1 3 no {} 
1.2 [2] no {1,3} 
2.3 I no {3} 
3.2 3 yes 
3 3 [3] no {} 

Remaining Partial Incom- Selected 
Instruction plete? Instructs. 
empty - {} 
{2} no {} 

{2,[I]} no {} 
{2,[I],3} no {2,[I],3} 
{[2]} no {2,[I],3} 
{[2],I} no {2,[I],3} 

{[2],I,[3]} no 

2.4 [I] no {3} {[2],[I]} 

{2,[I],3; 
[2],I,[3]} 

Comments About the Trace: 

Node O: 
Node 2. I : 
NoOe 3. I : 

Node 3.2: 
Node 3.3: 

1~ooe 2.4: 

The remaining Dset is initially the same as Dset. 
I conflicts with 2, so return to parent node. 
remaining Dset empty, so add the current partial 
instruction to the SelectedIs, then backup to the 
first ancestral exclude node, which is Node 2.2. 
3 conflicts with I, so return to parent node. 
Select the current partial instruction. Since 
the current node is an exclude node, there is no 
backu~ to an exclude node. Return to parent node. 
The partial instruction {[23,[I]} is a 
subinstruction to the first selected instruction, 
{2,[I],3}. Return to parent node. 

FIGURE 9. Introductory example of forming complete instructions. 

for inclusion in I. There is no conflict and 
the remaining Dset is empty, so I ({2, [1], 
3} ) is selected (node 3.1). We back up to 
the most recent exclude node, indicated by 
the b next to node 2.2. Now we consider 
excluding 2 (node 1.2). I ({ [2]} ) is not a 
subinstruction to the selected instruction 
{2, [1], 3} since I might be able to contain 
1. Next I is picked, found to have no conflict 
with I, and added to I (node 2.3). Then 3 is 
picked, but its inclusion conflicts with 1 

(node 3.2). Excluding 3 does not cause I 
( { [2], 1, [3] } ) to be a subinstruction to {2, 
[1], 3}, so I is selected (node 3.3). Since the 
last node on the path is an exclude node, 
there is n0 backup. The next node in the 
normal order is [1], but the resulting I( {[2], 
[1]} ) is found to be a subinstruction to the 
first selected I ( {2, [1], 3} ). Thus I is incom- 
plete relative to the first selected instruc- 
tion (node 2.4). This completes the 
FormCIs execution. 

Computing Survey~Vol. i~ No, 3, September 1980 
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3.1.2 The Full ForrnGIs Algorithm 

Accommodating unbound resources in the 
proposed algo~ is straightforward. We 
produce a version of an MB for each pos- 
sible binding of its resott~es. Whenever an 
MB is considered for inclusion, an include 
node for each version is generated. How- 
ever it now becomes possible for a new 
selected instruction to "supersede" an old 
one. In other words, an already selected 
instruction might be a subinstmction to the 
newly selected one; the new one cannot be 
a subinstruction because such an'instruc- 
tion fails the completeness test. The algoo 
rithm discards superseded instructions. As 
a consequence each instruction in the final 
list of instructions is guaranteed to be com- 
plete. (Recall that  in Section 3.1 we stated 
that every complete instruction is in the 
list.) 

We now redefine subinstruction to incor- 
porate the concept of weak dependency. 
First, we define the e x t e n d e d  r e m a i n i n g  
Dset. An MB is in the extended remaining 
Dset if it is in the remaining Dset or if it is 
below the remaining Dset in the graph and 
each of its parents satisfies one of the fol- 
lowing: 

(1) the parent is above the original Dset in 
the graph, or 

(2) the parent is in the extended remaining 
Dset and the MB is weakly dependent 
on it. 

Now we can say that a partial instrUction 
is a subinstruction to an instruction if the 
union of the partial instruction and its ex- 
tended remaining Dset is a subset of the 
instruction. 

Alternatively, an analysis of subinstruc- 
tion could be based on the excluded MBs 
instead of the remaining Dset, but the al- 
gorithm would operate in essentially the 
same manner. The application of the ex- 
tended algorithm in a simple example can 
be seen m Figure 10. A flow diagram for the 
full algorithm appears in Figure 11. 

3.2 Alternative Approaches 

List scheduling algorithms (Section 4.4) 
consider only one possible complete in- 
struction from each Dset. This allows a 
corresponding simplification in the calcu- 
lation of complete instructions [WooD78, 

' " '  . . . .  / ' ' V  " '~ ' ~ '  " " ~ " ~  " • 
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FmH79]. The tree of MBs is collapsed into 
a linear list of MBs. Each time a choice of 
MBs is possible, only one of them is consid- 
ered. A weighting function is applied to 
make the choice. 

There are two advantages to this ap- 
proach. First, the computational complex- 
ity of forming complete instructions is re- 
duced from exponential to linear. This is 
significant since sets of complete instruc- 
tions are calculated many times during the 
course of a compaction. Second, this algo- 
ri thm is much easier to program. Since only 
one instruction is being generated, there is 
no need to do subinstruction analysis. 

Another approach to forming complete 
instructions has been developed by DeWitt 
[DEWI76]. DeWitt's algorithm, AP- 
PLYCWM, is significant because it gener- 
ates all possible complete instructions yet 
is computationally less complex than the 
FormCIs algorithm of the previous section. 
An execution tree generated by AP- 
PLYCWM has fewer nodes than a FormCIs 
tree for the same Dset. 

APPLYCWM begins with an empty MI 
and starts adding MBs one at a time, just 
as FormCIs does. However no new node is 
generated until a resource conflict actually 
occurs. Thus one node can contain several 
MBs. When a conflict occurs between two 
MBs, two new nodes under the current 
node are created. One contains the MBs in 
the current node and one of the conflicting 
MBs, and the other contains the current 
node's MBs and the other conflicting MB. 
Then APPLYCWM continues adding MBs 
from the Dset to both of the new nodes. 
This process continues until all the nodes 
from the Dset have been used. 

Since the execution tree for AP- 
PLYCWM only branches if a new MB con- 
flicts with the MBs already in a node, it will 
be smaller than the tree for FormCIs, which 
has multiple branches for every new MB. 
However APPLYCWM cannot be used 
with the model from Section 2, because it 
makes no provision for handling different 
Versions of the same MB. 

It is not clear how APPLYCWM and the 
model can be extended in order to work 
together. The version concept could possi- 
bly be modified to allow an individual re- 
source to be bound without binding an en- 
tire MO. Then APPLYCWM could be rood- 



FormCIs Tree: 
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( IA )  ( IS )  
/ \ / b 

(2A) ( [ 2 ] )  (2A) 
/ \ i / b 

(3A) ([3]) (3A) 

clA L l 
SelectedIs 

1 {IA; 2A; [3 ] }  

2 {IB~ 2A; 3A} 

Execution Trace: 
Con- 

Node MD 
0 -- -- 

1.1 IA no 
2.1 2A no 
3.1 3A yes 
3.2 [3] no 
,2.~ [2] no 
1 .2  IB no 
2 .3  2A no 
5 .3  3A no 
i 

MB: I, 2, 3 

Versions: ~'IA 2A 3A 
1 IB 

Conflicts: IA c 3A. 

DDG: (I) (2) 
I wd 
(3) 

*-The indicated Selected 
I is discarded because 
it is a subinstruction 
to the new Selected I 

Remaining Partial Incom- 
flict? Dset Instruction plete? 

{1,2} empty - 
{2} {IA} no 
{3} {IA,2} no 

{} {1A,2A,[3]} no 
{} {IA,[2]} yes 
{2} {IB} no 
{3} {IB,2B} no 
{} {IB,2A,3A} no 

Selected Is 

{} 
[} 
{} 

{1A,2A,[3]} 

{1A,2A,[3]} 
{IA,2A,[3]} 
{IB,2A,3A} 

lCommen5s About the Trace: 
iNodeO: The Dset is {1,2}. MB 3 is not data available. 
INode2.1: Choosing MB 2 causes its wd descendant, 

MB 3, to be added to the RemainingDset. 
Node3.1: 3A conflicts with IA, so return to parent node. 
Node3.2: The empty RemainingDset causes us to select the 

current partial instruction. There is no backup 
because the current node is an exclude node. 

Node2.2: The partial instruction {IA,[2]}is a subinstruction 
to the selected instruction {1A,2A,[3]} because 
excluding 2 implies excluding 3 (since 2 wd 3). 
Return to parent node. 

Node3.3: While entering the current partial instruction, we 
remove the previously selected instructions which 
are subinstructions to it. We try to backup to the 
first ancestral exclude node, and, since there 
is not one, we are back at node 0 and are finished. 

279 

FmVRE 10. Example trace of the full FormCIs algorithm. 

ified to bind resources in order to resolve a 
conflict. Although final instructions might 
still contain unbound resources, this pre- 
sents no problem since an arbitrary binding 
is sufficient at this point. 

4. COMPACTION ALGORITHMS 

All o f  the  microcode  compact ion  algorithms 
t h a t  have  appea red  as of  this writing fall 
into one  of  four categories: linear analysis,  

critical path, branch and bound, and list 
scheduling. Representative algorithms for 
each of these categories are presented in 
the following sections. 

The operation of the compaction algo- 
rithms is shown by a common example. The 
data dependency graph and conflicts for 
the example SLM are given in Figure 12. 
This SLM has eight r~dcrooperation bun- 
dles. MB 3 depends on MB 2, MB 4 on both 

Comput~ ~rveys; VoL t$,No.~, September 1980 
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I~" i i  i I 

CheckNextMB:  

I £  Rez , la in lngDset  i s  empty  t h e n :  
A d d a  copy  o f  I t o  S e l e c t e d I s ;  
Remove any S e l e c t e d l s  t h a t  a r e  
subinstruetions t o  I ;  
Set BackUpToAnExcludedMB true; 
Return. 

t i 

Pick and remove  a MB from RemainingDset. 
Add its data available wd successors. 

t 
i I i i 

For each version of the MB: 

If this version conflicts with a HB in I, 
then Skip the rest of this box. 

Add this version of HB to I. 
Call Che~kNextMB (to consider all 

possible ways of addinE MBs still in 
RemalningDset). 

Subtract this version of MB from I. 
If BackUpToAnExcludedMB was set to true 

dgring the call then Return. 

[ l 

ii l [ 

t 
.Subtract the wd successors t h a t  were 
added to Remainingbset. 

t 

I f  addinE this MB to MBsNotInI implies 
that I will be a subinstruction to one 

: of ~electedIs then Skip the rest of 
this box. 

Add MB to MBsNotInAnI. 
Call CheckNextMB. 
Subtract FiB from MBsNotInl. 
If BackUpToAnExcludedHB was set to true 

durinE the call then Set it to false. 
Subtract MB from MBNotInI. 
~eturn. 

i 

F[GURI~ 11. Flow diagram of Fo~n~CIs algorithm. 

MBs 1 and 3, both MBs 5 and 6 on MB 4, 
and MB 8 on MB 7. There are three con- 
flicts between MBs:. MB 2 with MB 7, MB 
3 with MB 7, and. MB 5 with MB 6. For 
this example _the type of conflict is unim- 
portant. • 

4 . 1  T h e  L i n e a r  A l g o r i t h m  " " 

The linear algorithm (Lin) is a modification 
of that described by D~gupta  and Tartar 
[DAsG76, BAlZN78, DASG78, DASG79]. It is 

Comp=~ s ~ . ~  voi ~t~k, ~ ~ ~mo 

restructured to fit our model and also is 
more efficient than their algorithm. Lin op- 
erates on an SLM which is in the form of a 
list of MBs. MBs from the SLM are added, 
i n t h e  order in which they appear on the 
list, to an initially empty list of microin- 
structions. For each MB in the SLM, an 
attempt is first made to add the MB to an 
existing MI, and if this fails, to a new MI 
created to hold it. (The name "linear" 
comes from the linear examination of the 

• i ~  "~ 



Local Microcode Compaction Techniques • 281 

(I) (2) (7) 

(3) (8) 
/ 

(4) 2 e 7 
/ \ 3 e 7 

(5) (6) 5 e 6 
(a) (b) 

FIGURE 12. Sample compaction problem. (a) Data 
dependency graph. (b) MB conflicts. 

original SLM and does not imply that  the 
algorithm executes in linear time.) We now 
present the algorithm in more detail. 

The search for an existing MI to which 
the MB currently being examined can be 
added begins with data dependency analy- 
sis. Starting at the bottom of the MI list 
and proceeding upward, examine each MI. 
Continue the search above a microinstruc- 
tion in the list if the MB under current 
consideration is not data dependent on any 
MB in that MI. If the current MB is data 
dependent on an MB in the ith microin- 
struction, the current MB cannot be placed 
in any microinstruction earlier than i. It  
can only be placed in the ith MI if it is 
weakly dependent with every MB on which 
it is data dependent. In other words, it can 
be placed if it will not execute until these 
MBs are finished. The object of this search 
is to find the earliest (highest) microin- 
struction in which the new MB can be 
placed without violating the ordering im- 
posed by the data dependencies in the 
SLM. This MI is called the r ise  l i m i t .  

The next step in the search for an existing 
MI is the examination of resource conflicts. 
To be placed in a microinstruction, the 
current MB must not conflict with any MB 
already in that  microinstruction. Assuming 
that  a rise limit i was found, search down- 

ward in the list, starting with microinstruc- 
tion i, for some microinstruction in which 
the new MB can be placed. When such a 
microinstruction is found, add the new MB. 
If no such microinstruction is found, add 
the new MB to the end of the microinstruc- 
tion list, thus forming a new microinstruc- 
tion containing only one MB. 

If no rise limit was found, then the cur- 
rent MB was not data dependent on any 
MB in the microinstruction list, and the 
MB can be added to any microinstruction 
with which it has no conflicts. In this case 
begin the downward search at the top of 
the MI list. If there are no microinstruc- 
tions to which the MB can be added with- 
out conflict, use the MB to form a new 
microinstruction at the top of all the other 
microinstructions. Placing this MB at the 
top will keep it from blocking any new MBs 
that  depend on it. 

Figure 13 shows the algorithm at work 
on the MBs of the example SLM. The first 
MB processed is MB 1. Since the list of 
MIs is initially empty, MB 1 is placed by 
itself in MI 1. The next MB, MB 2, is not 
data dependent on MB 1. It can therefore 
be placed in MI I along with MB 1, assum- 
ing no conflicts exist. Since MB 1 and MB 
2 do not conflict, they are combined into a 
two-MB MI. 

The next MB is MB 3. It is data depen- 
dent on MB 2, so it can be placed no higher 
than MI 2. Therefore a new MI, MI 2, that  
holds MB 3 is created, 

MB 4, being data dependent on MB 3, 
similarly forms a new MI, MI 3. In the same 
fashion, MB 5 forms MI 4. MB 6, data 
dependent on MB 4, can rise no higher than 
MI 4. MB 6 cannot be placed in MI 4, 
however, because of a conflict between 
MBs 5 and 6. MB 6 is placed in a new 
microinstruction, MI 5. 

FIGURE 13. Lm execution ~acefor ~eexample m Figure12. 

List of MIs after Adding Microoperation Bundle: 

I 2 3 4 5 6 7 8 
MI 
I I 1,2 1,2 1,2 1,2 1,2 1,2 1,2 
2 3 3 3 3 3 3 
3 4 4 4 4,7 4,7 
4 5 5 5 5,8 
5 6 6 6 

ComputingSurveys, VoL 12, N o. 3, ~e~tember 1980 
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(* predefined eons t  maxMBs, maxInstrs; 
predeflned type  MOBUNDLE, INSTR; ~ 
type  SLMB s a r r ay [0 ,  j n a ~ ] ~ '  MOBUNDLE; 0th elem m length 
t ~ e  SLMI - a r r ~  [0..m~lnstr.] otmSTa; ~h elm - length 
The procedures and functions used must be'defined. 

• ) " : 

 7oed e L in (sh B: 

Approximate mirJmization of number of microinstructions constructed from microoperation bundles in slm 
form (branches 0nly at  end, entries only at  start). 

,) 
v a r  b: MOBUNDLE; 

bNum: 1..maxMBs; 
i :  integer; 
riseLimit:0..maxInstrs; (* instr that  b cannot precede *) 
lastI: 0..maxInstrs; 

begin 
AppendI (InstrFromMB (slmB[1]), slmI); 
lastI :R 1; 
for  bNum ffi 2 to  NumElements (slmB) do b e g i n  

b : -  slmB[bNum]; 
(* Find RiseLhnit *) 
i :ffi lastI; 
whi le  (i > 0) and CanPrecedeI (b, s imile)  do  i :ffi i - 1; 
riseLimit :E i ;  
(* Add b to an instr <ffi riseLimit *) 
i f  (riseLimit ()0) and 

CanAddToUnprecedableI (b, slmI[riseLimit]) 
t hen  AddToI (b, slml[riseLimit]) 
e lse  beg in  

(* i is still ~- riseLimit *) 
(* note slmI[lastI + 1] might be referenced below *) 
r e p e a t  i :ffi i + 1 
unt i l  ( i >  lastI) or CanAddToPrecedablel (b, slmI[i]); 
i f  i <~- lastI t hen  AddToI (b, slmI[i]) 
e lse  beg in  (* no instr where b can be added *) 

ff  riseLimit ffi 0 
then  InsertIAtTop (InstrFr0mMB (b), slmI) 
else AppendI (InstrFromMB (b), slml); 
lestI : s  lastl ÷ 1; 

end  (* if *); 
end  (* if*); 

end  (* for *); 
end  (* Lin *); 

FxcuaE 14. Lin in PASCAL. 

The next MB, MB 7, is not data depen- 
dent on any previously placed MB. It can 
therefore be placed in any- MI with which 
it does not conflict. The search for such an 
MI starts with MI  1. MB 7 cannot be placed 
in MI 1 because of a conflict with MB 2. It 
cannot be placed in MI 2 because of a 
conflict with MB 3. There is no conflict 
with MB 4, so MB 7 can be added to MI 3. 
MB 8 is the last MB to be placed. It cannot 

Computing $~rveys, V ol,I12,N0. ~ ~ p ~  1980 

be placed in an MI before MI 4 because of 
its data dependency on MB 7. It can be 
added to MI 4 since there is no conflict 
between MBs 5 and 8. 

The final microprogram has five microin- 
structions and is of optimal length. That is, 
there is no way to form fewer than five 
microinstructions from this SLM. We can 
intuitively see that five is the minimum 
length by noticing that the longest path 
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(2) (3) (I) 

(5) (4) 
/ 

(6) I c 3 
/ \ I c5 

(7) (8) 7 c 8 

(a) (b) 

List of Mls after Microoperation Bundle: 

I 2 3 4 5 6 7 8 
MI 
I I 1,2 3 3 3 3 3 3 
2 1,2 1,2 1,2 1,2 1,2 1,2 
3 4 4,5 4,5 4,5 4,5 
4 6 6 6 
5 7 7 
6 8 

(c) 
FIGURE 15. Example of nonoptimal Lin execution. (a) Renumbered 

data dependency graph. (b) Renumbered microoperation conflicts. 
(c) Execution trace. 

through the DDG is of length 4. To keep 
data-dependent MBs in different MIs, we 
need at least four MIs, and therefore 4 is 
the theoretical lower bound. A fifth MI is 
necessary due to the conflict between MB 
5 and MB 6. 

A PASCAL procedure for the Lin algo- 
rithm can be seen in Figure 14. In order to 
run, this procedure must be supported by 
the predefined types MOBUNDLE and 
INSTR, as well as by the following routines: 
AppendI, CanPrecedeI, CanAddToUnpre- 
cedableI, CanAddToPrecedableI, AddToI, 
and InsertIAtTop. 

Though the Lin algorithm performed op- 
timally in the example of Figure 13, it is not 
guaranteed to do so. Figure 15a shows the 
DDG in Figure 12 renumbered. Since Lin 
is a first-come, first-served algorithm, this 
will have an effect on the performance. 

Figure 15c shows the performance of Lin 
on this DDG. MBs 1 and 2 are not data 
dependent on each other and do not con- 
flict, and so are combined into MI I. MB 3 
is not data dependent on either of the pre- 
vious MBs and so can be added to MI I if 
it does not conflict with the MBs. However 
MB 3 does conflict with MB 1, so a new MI 
must be formed. In this case, as mentioned 
previously, we form a new MI above the 
already formed MI. MB 4, data dependent 
on MB 1, is placed in MI 3. MB 5, data 
dependent on MB 3, can be placed no ear- 

lier than MI 2. It conflicts with MB I in MI 
2, however, and is therefore placed in MI 3. 
MBs 6, 7, and 8 are placed next, forming 
three new MIs, as in the foregoing example. 
The resulting microprogram is six microin- 
structions long and is thus nonoptimal. 

How can this algorithm be made always 
to produce optimal results? This can be 
accomplished only by running the algo- 
rithm with the MBs in the SLM in every 
legal order (every order that does not vio- 
late data dependency) until an optimal list 
of MIs is obtained. However it is imprac- 
tical to do this because the many redundant 
calculations involved make. this approach 
much slower than the BAB algorithm of 
Section 4.3. 

Weak dependencies are handled in a 
straightforward manner by the Lin algo- 
rithm. They are tested when Lin starts to 
check for conflicts with the rise limit. The 
current MB was found to be dependent on 
some MB(s) in the rise limit. Any strong 
dependency here means the current MB 
cannot be added to the rise limit MI. In the 
PASCAL example of Figure 14, this analy- 
sis is done by CanAddToUnprecedableI. 

4.2 The Critical Path Algorithm 

Critical path algorithms for ~dcrocode com- 
paction were introduced by Ramamoorthy 

Computing Surveys, VoL 12, :No. 3, September 1980 
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Early Partition Late Partition Critical Partition 
Frame 

1 1 , 2 , 7  2 2 
2 3,8 1,3 3 
3 4 4,7 4 
4 5,6 5,6,8 5,6 

(a) 

Revised Critical Partition 
Frame 

I 2 
2 3 
3 4 
4a 5 
4b 6 

Co) 

Noncritical MBs 

1,7,8 

List of MIs After Adding Noncritical MB: 

1 7 8 
Frame 

I 1,2 1,2 1,2 
2 3 3 3 
3 4 4,7 4,7 
4a 5 5 5,8 
4b 6 6 6 

(c) 

FIouR~. 16. CPath execution of the example in Figure 12. (a) Forming tl~e critical partition. (b) The 
revised critical partition. (c) Adding the noncritical MBs. 

and Tsuchiya [RAMA74]. Their technique 
was similar to the critical path approach to 
processor scheduling [RAMA69, GONZ77]. 
The following critical path algori thm 
(CPath) attempts to identify MBs that 
must be executed at a certain time in order 
for the list of MIs to be optimal. The MBs 
chosen are those which are on a longest 
path (the critical path) through the DDG. 
As noted, the minimum possible number of 
MIs is just the length of a longest path. If  
any MB on this path is delayed beyond the 
MI where it first becomes data available, 
any MB following will also be delayed, and 
the number of MIs in the list will be in- 
creased. 

CPath proceeds as follows (see Figure 
16). The first s tep is to create an ea r ly  
pa r t i t i on  (EP). Each time frame of the EP 
contains those MBs that could be executed 
in that  time, at the earliest. Figure 16a 

Computing Surveys, Vot 12, No. 3, September 1990 

shows the EP for the example SLM. Since 
MBs 1, 2, and 7 are not data dependent on 
any other MB, they can be executed in 
frame 1. MBs 3 and 8 are each dependent 
on an MB in frame 1 and thus can be 
executed in frame 2 at the earliest. MB 4 is 
dependent on MB 3 in frame 2, so it can be 
executed in frame 3. Notice that  although 
MB 4 is also dependent on MB 1, i t  must 
be placed in frame 3; otherwise it could 
execute at the same time as one of its 
ancestors in the DDG. An MB must be 
placed in the frame of the EP after the 
frame of its latest ancestor. 

MB 5, being dependent on MB 4, is 
placed in frame 4. The same is true for MB 
6. Notice that  data dependencies alone de- 
termine the placement of MBs in the EP. 
Conflicts are resolved later. 

The final early partition is of length 4. 
This is the length of the longest path 



Local Microcode Compaction Techniques , 285 

through the DDG and defines the minimal 
number of MIs in the list of MIs. 

The next step is the creation of a la te  
pa r t i t ion  (LP). In the LP the latest possi- 
ble timings of the MBs are displayed. The 
LP is created by moving backward through 
the SLM. No MB is dependent on MB 8, 
so MB 8 can be the last MB executed. It 
can therefore be placed in time frame 4 of 
the LP. Again, the length of the LP is just 
the length of the longest path through the 
DDG. 

The next MB placed is MB 7. Since MB 
8 is dependent on MB 7, MB 7 must be 
placed in the time frame before MB 8, or 
frame 6. No MBs are data dependent on 
either MB 5 or 6, and so these MBs can be 
placed in time frame 4. Since MBs 5 and 6 
are dependent on MB 4, MB 4 must be 
placed in frame 3. MBs 1 and 3, both ances- 
tors of MB 4, must be placed in the frame 
preceding that of MB 4, flame 2. Finally, 
MB 2, the ancestor of MB 3, is placed in 
frame 1. The resulting LP is in Figure 16a. 
If the data dependency graph is represented 
by a matrix, the LP can be created by 
applying the EP algorithm to the transpose 
of the graph matrix. 

The construction of these partitions fa- 
cilitates the identification of MBs on the 
critical path of the DDG. These MBs, 
called critical MBs, are just those with the 
same early and late timings. It is trivial to 
construct a cr i t ical  pa r t i t ion  (CP) by ex- 
amining the EP and LP. The critical parti- 
tion for our example is shown in Figure 16a. 
MBs 2, 3, 4, 5, and 6 are critical here. The 
length of the CP is, of course, the length of 
the longest path through the DDG, in this 
case 4. The CP serves as a skeleton of our 
final list of MIs. 

Since the CP was constructed by consid- 
ering only data dependencies between MBs, 
two MBs in the same frame of the CP may 
conflict. And since the frames of the CP 
will serve as a basis for MIs in the list of 
MIs, conflicting MBs in a frame must be 
separated. In frame 4 of our example CP, 
MBs 5 and 6 conflict. A frame with conflict- 
ing MBs must be split so that the MBs in 
the resulting subframes do not conflict. In 
our example frame 4 is trivially split into 
subframes 4a and 4b, each containing a 
single MB. The result of this process, the 
r ev i s ed  cr i t ical  pa r t i t i on  (RCP), is 

shown in Figure 16b. We will continue to 
talk in terms of frames because they pro- 
vide a link between the RCP and the early 
and late partitions. As seen from frame 4, 
one frame can contain several microinstruc- 
tions. A subframe is a partially complete 
microinstruction. Either FonnCIs or a sim- 
ilar algorithm must be used to form the 
subframes. 

The next and final step of CPath is to 
add the noncritical MBs to the RCP, form- 
ing the final list of MIs. The noncritical 
MBs here are MBs 1, 7, and 8. We search 
the RCP from the frame containing the MB 
in the EP to the frame containing the MB 
in the LP for a microinstruction to which 
the noncritical MB can be added. In the 
case of MB 1, we start with frame 1 and end 
with frame 2. If the MB cannot be added to 
any of the frames within this range, a new 
subframe is created. This subframe is posi- 
tioned at the end of the last frame in the 
range. The MB is placed in this subframe, 
creating an MI with only one MB. In our 
example, however, MB 1 can be added to 
the MI in frame 1 without difficulty. Figure 
16c, column 1, shows the list of MIs after 
MB 1 is added. 

MB 7 can be added to either frame 1, 2, 
or 3. It cannot be added to frame 1 because' 
of a conflict with MB 2 or to frame 2 
because of a conflict with MB 3. It can be 
added to frame 3 however. 

The final MB to add is biB 8. If we used 
the EP to indicate the earliest frame to 
which MB 8 could be added, we would find 
that it could be added to frame 2. If it were 
added to frame 2, however, it would be 
placed before MB 7, thus violating the data 
dependency constraint. Therefore we must 
revise the EP to place all MBs dependent 
on MB 7 after MB 7. The earliest timing of 
MB 8 becomes frame 4, which is also the 
latest possible timing. We at tempt to add 
MB 8 to the subframes of frame 4, in turn, 
and find that MB 8 can indeed be placed in 
subframe 4a. Column 8 of Figure 16c shows 
the final list of MIs, which is of length 5 
and therefore optimal. 

The critical path algorithm, like the lin- 
ear algorithm, does not always produce op- 
timal results. This can be shown by consid- 
ering our example DDG, plus the following 
conflict: 4 c 7. The early, late, critical, and 
revised critical partitions remain the same 
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List of MIs a£ter adding Noncritical MB: 

" 1 7 8 
Frame , F r a m e  ~ , 

1 1,2 1 1,2 1,2 
2 3 2 3 3 
3 q 3a . 4 4 
4a 5 3b 7 7 
4b 6 t l a  5 5,8 

4b 6 6 

FIGURE 17. Example of nonoptimal CPath execution: Adding the noncritical MBs. 

as fo~ the foregoing example. However the 
result of adding the noncritical MBs is 
changed. MB I can be added to frame 1, as 
before. MB 7, however, cannot be added to 
frame 3 because of a conflict with MB 4. 
Since frame 3 is the latest time frame of 
MB 7, a new subframe must be created 
after frame 3 and before frame 4a. In col- 
umn 7 of Figure 17 MB 4 is in frame 3a and 
MB 7 is in frame 3]). 

As before, MB 8 must be placed within 
frame 4. It can be placed in frame 4a, giving 
the list of MIs of•Figure 17, colUmn 8. This 
list of MIs is of length 6 and is nonoptimal, 
as can be seen by moving MB 8 to frame 4b 
and MB 7 to frame 4a, giving the list of MIs 
of Figure 18. This list of MIs is five microin- 
structions long and is optimal. 

This example shows the weakness of the 
critical path algorithm. Two adjacent 
subframes may be composed into a single 
microinstruction but are not because of the 
rigid boundaries between frames imposed 
by the algorithm. This problem does not 
arise from the first-come, first-served na- 
ture of the algorithm. The foregoing non- 
optimal list of MIs would have been ob- 
tained for any ordering. Both an exhaustive 
search of the possible orderings and an 
attempt to cc,'nbine adjacent frames would 
be necessary to make this algorithm opti- 
mal. 

Frame MI 

FIGURE 18. 
Figure 17. 

I 1,2 
2 3 
3 4 
4a 5,7 
4b 6,8 

An optimal solution to•the problem of 

Weak dependencies are handled in 
CPatl~ by putting MBs in the same frame 
of the E P a n d  LP as the parents on which 
they are weakly dependent. 

• 4 .3  The Branch and Bound Algorithm 

The third algorithm to be considered is 
branch and bound (BAB), a general class 
of tree,searching scheduling a~gorithms. 
Yau, Schowe, and Tsuchiya [YAU74] were 
the first todescribe the application of this 
technique to micr6code compaction. 

In BAB, a tree is built, the nodes of which 
correspond to micrginstructions. A path 
from the root of thee tree to a leaf is an 
ordering of MIs, and thus a list of MIs. The 
tree branches whenever there is more than 
one mie_roinstruction that could be placed 
at a point in the list of MIs. A complete tree 
represents every possible microinstruction 
ordering. 

There are two variants of this algorithm. 
The first is BAB exhaustive, in which every 
branch of the tree that could possibly lead 
to an optimal MB ordering is explored. The 
other is BAB heuristic, in which pruning is 
done to the tree. BAB exhaustive is an 
optimal algorithm, thus running in expo- 
nential time, while BAB heuristic is not 
guaranteed optimal and can be made to run 
in polynomial time. 

The growth of the tree can be bounded 
even in BAB exhaustive. As in the other 
algorithms, calculate the lower bound on 
the number of microinstructions in the best 
possible ordering. (Remember that this is 
the longest path through the DDG.) A path 
through the BAB tree of this length repre- 
sents an  optimal ordering, and the algo- 
rithm can stop once such a path is obtained. 
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The growth of the tree can be further 
bounded by remembering the length of the 
best (shortest) path found so far. If the 
length of an incomplete list of MIs is greater 
than or equal to this length, the current 
path needs no further consideration. 

Like the critical path algorithm, the BAB 
algorithm gets its information on the data 
dependencies of an SLM's MBs through a 
DDG. The first step of the BAB exhaustive 
algorithm is the construction of a data 
ava i lab le  se t  (Dset). This is the set of all 
unplaced MBs that are not data dependent 
on any unplaced MB. The contents of the 
Dset change as execution of the algorithm 
progresses. The initial Dset (Dset 1) for our 
example in Figure 12 is 1, 2, 7 (just those 
MBs not dependent on any other MB). 

The next step is to form microinstruc- 
tions from the MBs in the Dset. We wish 
to form only the largest possible MIs. These 
are called complete instructions (CIs). A 
complete instruction is defined as an in- 
struction to which no other MB in the Dset 
can be added (see Section 3). Thus a CI is 
not a subset of any other legal MI. CIs 
make up the nodes of the BAB tree so that 
a path through the tree (a list of MIs) is a 
list of CIs. 

An algorithm for the identification of CIs 
is found in Section 3. For our example, the 
CIs are easily identified. For Dset 1, the CIs 
are 1, 2 (I1) and 1, 7 (I2). MBs 2 and 7 
cannot appear together because of the con- 
flict between them. MB 1 by itself is a legal 
microinstruction but not a CI because it is 
a subset of I1. 

At this point it is not known which of the 
CIs will lead to a better list of MIs. There- 
fore the tree must be split and each CI dealt 
with in turn. Figure 19 shows the execution 
of the BAB exhaustive algorithm. Each 
part of the figure shows one step. In Figure 
19a the initial Dset, the CIs generated from 
it, and the tree produced by splitting the 
CIs are shown. 

We built the BAB tree depth-first to 
allow us to find the length of some com- 
pleted paths which may enable us to cut off 
some other paths. Let us proceed with the 
left branch of the tree. 

Calculate Dset 2 by first removing the 
MBs in I1 from Dset 1. This leaves MB 7 
in the Dset. Next add the MBs that have 

become data available to the Dset. At this 
point MB 3, data dependent on MB 2, 
becomes data available because MB 2 has 
been added to the tree. Note that MB 4 
does not become data available because it 
is dependent on MB 3, which is still in the 
Dset at this point. 

Since MBs 3 and 7 conflict, there are two 
single MB CIs that can be generated from 
Dset 2: I3, which consists of MB 3, and I4, 
which consists of MB 7. Split the tree again. 
Figure 19b shows the state of the tree at 
this point. 

Again proceeding down the left branch, 
calculate Dset 3. This Dset consists of MBs 
4 (dependent on MB 3) and 7. Since these 
MBs do not conflict, only one CI can be 
generated from this ]:)set, which consists of 
both MBs 4 and 7. Thus we do not branch 
here. The tree with this node added is 
shown in Figure 19c. 

The new Dset (Dset 4) consists of those 
MBs dependent on MBs 4 and 7. All the 
remaining MBs fit this description, so Dset 
4 contains MBs 5, 6, and 8. Since MBs 5 
and 6 conflict, two CIs are formed from this 
Dset; one contains MBs 5 and 8, and the 
other contains MBs 6 and 8. Since there are 
two CIs, the tree branches, thus producing 
the tree of Figure 19d. 

Pick I6, leaving MB 6 in the Dset. This 
Dset, Dset 5, obviously forms just one CI, 
I8. Adding I8 to the tree exhausts the MBs 
in the SLM, so the path from the root to I8 
forms a list of MIs of elements I1, I3, I5, I6, 
and I8. Figure 19e shows the equivalent list 
of MIs, which is of length 5 and is optimal. 
However it does not reach the lower bound 
of length 4, and since there are more CIs to 
investigate, execution of the algorithm does 
not terminate. Mark the leaf of this path 
with a "P" to indicate that this is the best 
path tbund so far. 

Now back up to Dset 4 and move down 
the right path, choosing I7. The new Dset, 
Dset 6, consists of MB 5, which forms one 
CI, I9. Add I9 to the tree (Figure 190, thus 
exhausting our list of MBs and producing 
a new list of MIs. Since this list of MIs is of 
length 5, which is no better than the first 
one produced, we throw this list of MIs 
away--indicated by placing an "X" below 
node I9. 

The next incomplete path ends with node 
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Dset. 1~: '1 ,2,7 
CIs:~ 11 = 1,2 I'\. 

12 = I ,7 11 12 

(a) 
i il 

CONSIDER I3 
Dset 3:4,7 
tIs: 15 = 4,7 I \ 

II I2 
/ \ 

I3 I4 
I 

I5 

(o) 
i i u ,  

CONSIDER 16 
Dset 5:6 
CIs: 18 = 6 / \ 

11 12 
/ \ 

I3 14 
I 

15 
/ \ 

16 17 
I. 
I8 

(e) P 

CONSIDER I4 
Dset 7:3,8 
Cls: II0 = 3,8 I \ 

11 12 
/ \ 

i3 I4 
I l 

I5 I10 
/ \ 

16 17 
t I 

18 19 
(g) P x 

CONSIDER I2 
Dset 1 0 : 2 , 8  
Cls: I14 : 2,8 / \ 

II I2 
(Dset 9 left / \ I 
to reaOer) I3 14 114 

i l 
I5 II0 

/ \ I 
I6 I7 ' II I 
l I / \ 

18 I9 I12 113 
(i) P X X X 

CONSIDER II 
Pset 2:3,7 
CIs: I3 = 3 

I4 = 7 

(b) 

CONSIDER I5 
Dset 4:5,6,8 
CIs: I6 = 5,8 

I7 : 6,8 

(d) 

CONSIDER I7 
Dset 6:5 
CIs: 19 = 5 

(f) 

CONSIDER 110 
Dset 8:4 
Cls: 111 : 4 

/ \ 
II I2 

/ \ 
I3 I4 

/ \ 
II I2 

/ \ 

I3 14 
I 

15 
/ \ 

I6 I7 

/ \ 
II I2 

/ \ 
I3 I4 
i 

I5 
/ \ 

I6 I7 
i l 
I8 I9 
P X 

I \ 
II I2 

/ \ 
I3 I4 
I I' 
15 ii0 

/ \ I 
I6 I7 I11 
i I 
I8 I9 

( h )  P x 
i 

CONSIDER I16 
Dset 13:5,6 
CIs: I17 = 5 / \ 

I18 = 6 II I2 
/\ I 

(Dsets; 11 & .I3 I4 I14 
12 left to / / I 
reader) 15 110 I15 

/ \ I I 
I6 I7 I11 I16 
I I I\ I\ 

I8 I9 I12 I13 I17 I18 
(j) P x x x x x 

FIOURE 19. BAB exhaustive execution of the example in Figure 12. 

Computing VoL 12, .3, 
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I4. Remember from Figure 19b that the 
Dset when this node was added to the tree 
was 3, 7. I4 corresponds to the choice of the 
CI consisting of MB 7. Thus the remaining 
Dset consists of MB 3. The new Dset, Dset 
7, consists of the MBs dependent on MB 7 
(MB 8) and MB 3. Dset 7 is shown in Figure 
19g. Only one CI can be formed from this 
Dset. This instruction, I10, consists of both 
MBs 3 and 8. It is added to the tree after 
I4, as shown in Figure 19g. 

Figure 19h shows the addition of the next 
CI, I l l .  There is nothing new in this step, 
or until the state shown by the tree in 
Figure 19i. I12 consists of MB 5. At this 
point we have placed all MBs except MB 6 
in 5 MIs. Since we have equaled the best 
path length, with one more MB to place, 
we know we can do no better than the list 
of MIs shown in Figure 19e, and we cut off 
this path. The same holds for the path 
ending with I13, except that here we have 
placed all but  MB 5. 

Next back up to I2, constructing I14 out 
of Dset 10 as shown in Figure 19i. The end 
of this path, and the complete BAB tree, is 
shown in Figure 19j. As in the case of the 
path ending with I12 and I13, at nodes I17 
and I18 we have equaled the best path 
length so far without placing all of the MBs 
in the SLM. Therefore we can cut off, as 
shown by the X's under nodes I17 and I18. 
At this point there are no more incomplete 
paths, and the algorithm has completed. 
The list of CIs found is the one shown in 
Figure 20. This list of CIs is of optimal 
length. 

In BAB weak dependencies are handled 
b y  the FormCIs algorithm. 

CI MBs 

FIGURE 20. 

11 1,2 
I3 3 
I5 4,7 
I6 5,8 
18 6 

The solution ~und m Figure 19. 

4.4 Branch and Bound Heuristics and List 
Scheduling 

Since the branch and bound algorithm con- 
siders all possible combinations of MBs, it 
is guaranteed to produce an optimally im- 

• • 2 8 9  

proved microprogram. The  cost, however, 
is exponential since all of the paths of the 
tree must be explored. It is possible to find 
a heuristic that will prune the BAB tree 
without affecting the resulting micropro- 
gram too adversely. Such a heuristic will, 
of course, not always produce optimal re- 
sults, but it should save a great deal of time. 
Tests of different heuristics have been re- 
ported by Mallett [MALL78]. 

Consider the following heuristic: Instead 
of examining each complete instruction 
generated from a Dset, examine only the 
"best" CI, where the best instruction is 
determined by some metric. This heuristic 
requires only an amount of time that grows 
polynomially with the number of MBs in 
the SLM. 

An algorithm that executes in this man- 
ner is an example of a list scheduling algo- 
rithm [ADAM74, FISH79]. Although list 
scheduling algorithms can be considered a 
special case of branch and bound algo- 
rithms, they are important in their own 
right. A list scheduling algorithm can be 
programmed much more easily than a full 
branch and bound algorithm. The tree of 
CIs is just one branch, and no bounds 
checking need be done. Furthermore, the 
complexity of FormCIs is greatly reduced, 
as noted in Section 3.2. 

MB Weight 

1 3 
2 4 
3 3 
4 2 
5 0 
5 0 
7 I 
8 0 

FIGURE 21. MB weights for the example in Figure 
12 (number of descendants in DDG). 

The weighting function used in forming 
the complete instruction affects the opti- 
mality of the compaction. Extensive tests 
of different functions were reported by 
Fisher [FISH79]. We present an example 
using a function proposed by Wood 
[WooD78]. 

The metric used by Wood is as follows. 
Assign a weight to each MB in the DDG. 
The weight of an MB is the number of 
descendants of that  MB (direct or indirect) 
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Dset Contents Complete Inst. List of ~ 

I 1,2,7 2,1~, ~ ~2,1 

2 3,7 3 2,1 
3 

3. 4,7 4,7 2,1 
3 

4,7 

4 5,6,8 5,8 2,1 
(First-Come, 3 
First-Served) 4,7 

5,8 

5 6 6 2,1 
3 

4,7 
5,8 
6 

FIGURE22. Lmtschedulingexecutionoftheexamplein Figurel2. 

Mls 

in the DDG. Figure 21 gives the weights of 
the MBs in our example. MB I has a weight 
of 3, since MBs 4, 5, and 6 are its descen- 
dants. MB 2 has a weight  of 4, since its 
descendants are 3, 4, 5, and 6. MBs with no 
descendants, such as MB 8, are assigned a 
weight of 0. 

Execution proceeds as follows (see Figure 
22). Compute a Dset from the DDG. Find 
the MB in the Dset with the highest weight. 
Add it to the MI, which is initially empty. 
Then find the MB with the second highest 
weight. If this MB does not conflict with 
any MB already in the MI, add it. Repeat 
until all the MBs in the Dset have been 
examined. The resulting MI is the CI with 
the highest weight. Add this MI to the list 
of MIs and compute a new Dset. Repeat 
until all of the MBs in the SLM have been 
placed. 

In Figure 22, Dset I contains MBs 1, 2, 
and 7. MB 2 is the MB of highest weight 
and is placed first in the CI. MB I has the 
second highest weight and can be added to 
the CI without conflict. The remaining MB 
in the Dset, MB 7, cannot be added to the 
CI because of a conflict between MBs 2 and 
7, and so the first instruction in the list of 
MIs is 2, 1. The construction of the rest of 
the list of MIs is straightforward. In this 
case the final list of Mis is of length 5, is 
optimal, and is exactly the same as the list 
of MIs produced by the exhaustive variant 
of BAB. 
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4.5 Computationa! Complexity 

In the past, the microcode compaction 
problem has had the reputation of being 
very complex [AO~.R76]. It  was widely be- 
lieved that a program for automatic com- 
paction would be too expensive to run in a 
production environment. This reputation is 
well deserved in the optimal case. Compac- 
tion is in a class of difficult problems which 
includes such well-known elements as the 
"traveling salesman problem." But  as with 
many of these problems, there exist practi- 
cal algorithms that can produce acceptable 
results for many applications. 

NP is a well-known class of "difficult" 
problems [MACH78]. Problems in this class 
can be solved on a nondeterministic Turing 
machine in polynomial time. Certain prob- 
lems in N P  are NP complete. If a polyno- 
mial time (deterministic) algorithm can be 
found to solve any problem that is NP 
complete, then a polynomial time algorithm 
can be found to solve every problem in the 
class. Since an algorithm with less than 
exponential time has never been found for 
an NP-complete problem, it is widely be- 
lieved that all NP-complete problems are 
of at least exponential complexity. We now 
show that microcod¢ compaction is at least 
as difficult as NP-complete problems. 

In ULLM73 the unit time scheduling prob- 
lem is shown to be NP complete. This prob- 
lem is as follows: 
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Given 

(1) a set S ffi { J1 , . . . ,  Jn} of jobs, 
(2) a partial order << on S, 
(3) that  each job requires one time unit, 

and 
(4) a number of processors, k 

(up to k jobs may be executed at each time 
unit), minimize tmax, the total number of 
time units required, under the constraint 
that  if J << J ' ,  then J '  does not execute 
until at least one time unit after J. 

It is straightforward to restrict our model 
to this problem. Let the SLM correspond 
to S, let data dependency be <<, and let the 
number of fields in an MI be k, where each 
MB can be in any field. (This same proof is 
done for a slightly different model in 
DEWI76.) Thus, if microcode compaction 
can be solved in less than exponential time, 
so can all problems in NP complete. 

An alternate approach to establishing the 
exponential complexity of microcode com- 
paction can be found in YAU74. It should 
be pointed out that some articles in the 
literature have claimed to have less-than- 
exponential solutions to the optimal com- 
paction problem. All of these claims have 
been shown to be invalid. 

Nonoptimal algorithms do not have to be 
exponential. The critical path,  linear, and 
list scheduling algorithms work in polyno- 
mial time. It should be noted that the name 
linear does not imply that this algorithm 
has linear complexity but rather that the 
SLM is processed one MB at a time. 

That  the linear algorithm runs in poly- 
nomial time can be shown by considering 
the worst case SLM, wherein there are no 
data dependencies between MBs and where 
each MB conflicts with each other MB. In 
this case each already placed MB must be 
examined in order to ascertain that  the new 
MB is not data dependent on any MB in 
the list of MIs. That is, i - 1 checks for 
data dependency must be done for the ith 
MB. The total number of checks done for 
an n MB SLM is therefore (n - 1)n/2. 
Each already-placed MB must be checked 
for conflict during the search for an MI to 
which the MB can be added. Again, for an 
n MB SLM, (n - 1)n/2 checks for conflicts 
must be done. Therefore n ~ - n compari- 
sons must be done between MBs in this 

worst case, showing that  the complexity is 
O(n2). 

A branch and bound algorithm with suit- 
able heuristics is competitive with the other 
algorithms. 

Extensive tests which support these con- 
clusions are reported in MALL78. In one 
test of an SLM of 96 MBs (231 MOs), for 
example, Lin compacted to 55 MIs using 
309 MO-to-MO comparisons, CPath com- 
pacted to 54 MIs using 376 comparisons, 
and a BAB heuristic restricted to list sched- 
uling compacted to the optimal 50 MIs 
using 491 comparisons. The execution times 
on a Honeywell 68/80 processor (MUL- 
TICS) were 6.7 seconds, 11~ seconds, and 
7.5 seconds, respectively. By contrast, an 
exhaustive BAB compaction required 
183,364 comparisons to find the optimal 50 
MIs and ran in 2629 seconds. 

One practical factor affecting the execu- 
tion times of compaction programs is often 
overlooked. Because branches and entry 
points (i.e., labels) are common inmicro- 
programs, the typical SLM is not very long. 

4.6 Register Allocation 

The previous sections on compaction algo- 
rithms do not address the problem of allo- 
cating registers. This makes the presenta- 
tions easier to understand. Furthermore, 
many applications do not need the compac- 
tion routine to allocate registers. Spurred 
by the rapid drop in the cost of high-speed 
memory, the trend in computer architec- 
ture is to include more and more registers 
for microprogramming. If there are more 
registers than microprogram variables, 
each variable can be allocated a register 
before compaction, and reallocation need 
never be done. 

The register allocation problem is as fol- 
lows. In addition to process registers, most 
microprogrammable processors have a lo- 
cal store.  Data can be moved back and 
forth between the registers and local store. 
If there are more variables than registers, 
registers must be reallocated during the 
execution of the program. To reallocate a 
register, the value of the old variable must 
be saved in local store (if the register has 
changed value), and the value of the new 
variable must be loaded from local store (if 
it is needed). The difficulty with register 
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reallocation is deciding which variables to 
reaUocate when a variable needs a register 
and there are no more unailocated (f~ee) 
registers. The wrong choice of variables can 
necessitate extra reallocations later. 

Register allocation can be incorporated 
into the compaction algorithms presented 
here by considering variables as unbound 
resources. The variable-to-register binding 
must be maintained in a separate data 
structure. Whenever a register reallocation 
becomes necessary, the different possible 
reallocations correspond to different MB 
versions. Store and load microoperations 
must also be added to perform t h e  reallo- 
cation. The register allocation problem is 
discussed at length in DEWI76. 

It should be noted that register allocation 
also-affects global analysis. Since register 
allocations are maintained between SLMs 
as well as within them, an SLM is often 
constrained by initial and final register al- 
locations. Under this constraint the order 
in which SLM compactions are performed 
is important. An unconstrained SLM may 
compact to fewer MIs than its constrained 
counterpart. Thus the most critical SLMs 
(inside loops, say) should be compacted 
first. 

5. CONCLUSIONS 

Linear analysis compaction algorithms are 
easy to write, and they run in a reasonable 
amount of time. However they can only 
operate on SLMs in sequential form, and 
their results depend orL the order of the 
microoperation bundles in the SLM. It is 
easy to construct an example for which 
linear algorithn~ produce more MIs than 
necessary. 

Critical path, branch and bound, and list 
scheduling algorithms operate on the SLM 
in graph form. Having to build a graph does 
not significantly increase execution time. 
The graph building program is also easy to 
write, although the compaction algorithms 
themselves are not straightforward to pro- 
gram. Critical path algorithms have diffi- 
culties with the rigid boundaries they im- 
pose between frames. These kinds of algo- 
rithms do not seem to be the best approach 
for microcode compaction. 

Branch and bound algorithms can be ex- 
haustively run to find optimum solutions 
(for the minimization of the number of MIs 
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for the SLM), but  doing so is prohibitively 
expensive. List scheduling algorithms and 
branch and bound algorithms with suitable 
heuristics can compact approximately as 
fast as linear analysis algorithm.s and are 
not nearly as dependent on the original 
order of the microoperations. Furthermore 
the probability of an optimal branch and 
bound compaction can be adjusted by 
changing the heuristics. List scheduling 
programs are easier to write than branch 
and bound programs. 

These algorithms can work with realistic 
processor models. It is true, however, that  
realistic hardware details make the algo- 
rithms harder to program. In particular, 
whenever microoperations have a choice of 
resources (registers, fields, e tc . )where the 
choice can have an adverse effect on later 
execution, the complexity of the compac- 
tion problem increases. Further investiga- 
tion of modeling processor control is 
needed. 

Exhaustive comparisons of the compac- 
tion algorithms have shown that all four 
kinds are capable of producing acceptable 
compactions in a reasonable amount of 
time. Often the small size of an SLM makes 
local compaction trivial. Although many 
issues merit further study, especially with 
regard to global compaction, practical com- 
pilation of horizontal microcode is feasible. 

GLOSSARY 
Compaction--Production of a sequence of mi- 

croinstructions that is semantically equivalent 
to a given ordered set of microoperations. 
Most compaction~ try to minimize execution 
time. 

Compatible--Having no resource conflicts. 
Complete instruction (CI)--Instruction to 

which no other MB in the Dset can be added. 
Confliet--Attempt to share an unsharable re- 

s o u r c e .  

Data available--Addition of an MO to a par- 
ticular MI in a list of MIs does not violate 
data integrity. 

Data dependent (dd)--mol dd mo/if moy is 
directly data dependent either on moi or on 
an MO which is itself data dependent on mol. 

Data dependency graph (DDG)--Graphical 
representation of a partial order over the MOs 
of an SLM. 



L o c a l  M i c r o c o d e  C o m p a c t i o n  T e c h n i q u e s  

D a t a  i n d e p e n d e n t ~ N o t  data  dependent.  

D a t a  i n t e r a c t i o n - - T w o  MOs have a da ta  in- 
teraction if an input  operand of one is also an 
output  operand of the  other or if they  have an 
output  operand in common. 

D i r e c t l y  d a t a  d e p e n d e n t  (ddd)--mo~ d d d  moi 
if mol precedes moj in the given MO ordering, 
if moi and moy have a data  interaction, and if 
no nonempty chain of directly data  dependent  
MOs exists between them. 

F ie ld - -Col lec t ion  of bits in the control word 
tha t  controls a primitive machine activity. 

G l o b a l  a n a l y s i s - - A n a l y s i s  that  considersmore 
than one SLM. 

H o r i z o n t a l  a r c h i t e c t u r e - - A r c h i t e c t u r e  tha t  
allows many MOs in the same MI. 

Host m a c h i n e - - C o m p u t e r  tha t  a given micro- 
program is designed to control. 

L o c a l  a n a l y s i s - - A n a l y s i s  tha t  considers one 
SLM. 

M i c r o i n s t r u c t i o n  (MI)--Specif icat ion of all 
MOs tha t  are to s tar t  during one machine 
cycle, i.e., a conflict-free set of MOs. 

M i c r o o p e r a t i o n  (MO)--Specif icat ion of a 
primitive machine operation. 

Microoperation b u n d l e  ( M B ) - - A  set of one 
or more MOs tha t  must  be executed in the 
same MI. 

M i c r o p r o g r a m - - S e q u e n c e  of microinstruc- 
tions. 

R e m a i n i n g  D s e t  ( R D s e t ) - - S e t  of all remain- 
ing MBs. 

R e m a i n i n g  M B - - M B  in a Dset  that  has not  
yet  been included in or excluded from the 
current microinstruction. 

O r d e r  p r e s e r v i n g - - T w o  MOs are order pre- 
serving if they can be placed in the same MI  
(ignoring resource conflicts) such tha t  for ev- 
ery resource causing a data  interaction be- 
tween them, the MO that  is earlier in the 
SLM finishes with the resource before the 
other  MO star ts  to use it. 

P a r a l l e l - - T w o  MOs which are order  preserving 
and conflict-free are parallel. 

P a r t i a l  i n s t ruc t ion - -Mic ro ins t ruc t ion  for 
which remaining MBs exist. 

P o l y p h a s e  t i m i n g - - A n  MI  cycle is composed 
of dist inct  phases; MOs are active only in 
specified phases. 
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P o t e n t i a l l y  c o m p l e t e  i n s t r u c t i o n - - P a r t i a l  
instruction tha t  is not  a subinstruction to any 
known complete instruction. 

S t r a i g h t - l i n e  m i e r o e o d e  s e c t i o n  (SLM)--Or-  
dered collection of  MOs with no entry  points 
except at  the beginning and no branches ex- 
cept possibly at  the  end. 

S t r o n g l y  d e p e n d e n t  ( s d ) - - I f  moi d d d  mo s and 
it is known tha t  moi is not  weakly dependent  
on moi, then mos is strongly dependent  on moi 
(moi sd  moj). 

Subinstruction--A part ia l  instruction is a sub. 
instruction to an instruction if the  union of 
the part ia l  instruction and all MBs tha t  can 
potential ly be added to i t  is a subset of the  
instruction. 

T r a n s i t o r y - d a t a  r e s o u r c e - - S t o r a g e  resource 
whose contents can become undefined at  the  
terminat ion of  an MI  in which i t  has been 
given a value. 

V e r t i c a l  a r c h i t e c t u r e - - O n e  tha t  allows only 
a few MOs, or  one M 0 ,  in an MI. 

W e a k l y  d e p e n d e n t  (wd) - -Given  two MOs, 
moi and moj, then moj is weakly dependent  on 
moi (moi w d  rnoj) if moj is directly data  depen- 
dent  on mo~, and if for every resource causing 
a da ta  interaction between them, moi finishes 
with the resource before moj s tar ts  to use it. 
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