FP8-17:. Software Programmable
Signal Processing Platform
Analysis

Andrzej Wasowski

Software Programmable DSP
Platform Analysis

Episode 2, Monday Feb 12, 2007
Contents, Goals, and Administrivia

Compilation environment
Preprocessor, Compiler, Assembler & Linker

Compiler Architecture

Lexical Analysis
Tokens, Regular Expressions

Syntactical Analysis
Context Free Grammars, Derivations
Parse Trees

Andrzej Wasowski | Episode 2: Welcome!

Contents

e Structure of a compiler

e Architecture and instruction set of DSPs/VLIW
e Implementation of a compiler for DSPs

o Lexical analysis

e Parsing

o Diagnostics

e Register allocation

e Code selection

o Code optimization

Andrzej Wasowski | Episode 2: Welcome!

Goals

You will
e learn the C programming language better
e understand compilation error messages

o know abilities and limitations of compilers
e be able to program more efficiently by:

« producing more efficient code.
¢ using less time for development.

e understand compiler documentation
e be able to choose compiler options

e be able evaluate compiler’s suitability for your
application.

e learn objective functions for code optimization.

Andrzej Wasowski | Episode 2: Welcome!

Non objectives

You will not

e be able to modify existing compilers without
excessive effort or additional introduction.

e be able to implement a compiler from scratch,

e know how to implement advanced features of
contemporary languages like: objects,
polymorphism, garbage-collectors, aspects,
higher order functions, etc.

e learn programming languages theory (type
systems, semantics, etc)

e learn mathematical linguistics (regular,
context-free languages, etc)

Andrzej Wasowski | Episode 2: Welcome! 2-7

Compilation Environment

obj & library
files

ezecutable or image

file

linker

single .obj

file

assembler

I

presrocessr 177

single library

file

obj & library
files

librarian

Andrzej Wasowski | Episode 2: Compilation environment

The course, teachers, etc.

Teachers:

¢ Andrzej Wasowski (compilers)
¢ Ole Wolf (architecture)

http://www.itu.dk/"wasowski/teach/dsp-compiler-07
« schedule, exercise sheets, slides and news

Text: Appel. Modern Compiler Implementation
in C + website.

Each module = 90 min. lecture + 90 min. tutorial
Do ask questions during lectures.

In depth understanding requires devoting more
time to the exercises than 90min.

Andrzej Wasowski | Episode 2: Welcome! 2-8

Compilation Environment (I1)

e Preprocessor expands macrodefinitions
(#def i ne’s), joins continued lines, removes
comments (in C), includes files (#i ncl ude).

o Compiler translates a single source file into
assembly file

o Assembler translates .asm file to a binary .o file

e Linker consolidates bits and pieces into a single
program.

e Modern linkers can perform global program
optimizations, too.

Andrzej Wasowski | Episode 2: Compilation environment

Compilation Environment: Example Example preprocessed

hello.c hello.c

#define MSG "Hel |l o, worl d!\n"

extern int printf(const char *format, ...); extern int printf(const char *format, ...);
/* A comment before the nmain function */
int main(int argc, const char * argv[]) int main(int argc, const char * argv[])
{ {
printf(MG); printf("Hello, worldl\n");
return O; return O
} }
requires: preprocessing, compiling, assembling and Expanded macros, removed comments, included
linking with the startup code and the C library. files (not in this example).

Andrzej Wasowski ~ Episode 2: Compilation environment Andrzej Wasowski |~ Episode 2: Compilation environment

Example compiled Example compiled (1)
Hello.c compiled wit GCC for x86, giving hello.s:
.file "hello.c" The compilation step is our main point of
.section .rodata interest
. LCO: .string "Hello, world!\n") _ _ _
.t ext e The C program is translated into a flat list of
. gl obl main _ _ simple instructions.
N btgﬁle {,}g'bg’ @unction . Instructions and addresses are symbolic
movl Y%sp, Y%ebp (mnemonics and labels).
pushl $.LCO
call printf
| eave
movl $0, %eax
ret

Andrzej Wasowski | Episode 2: Compilation environment Andrzej Wasowski | Episode 2: Compilation environment 2-14

Example compiled IlI

Hello.c compiled with TI's cl6x giving hello.asm (fragment):

SL1: .string "Hello, world!",10,0

CALL .S1 _printf

STW. D2T2 B3, *SP-(16)

MVKL .S2 RLO, B3

MVKL .S1 SL1+0, A3

MVKH . S1 SL1+0, A3

STW. D2T1 A3, *+SP(4)

|| MVKH .S2 RLO, B3 ; CALL OCCURS
RLO: LDW.D2T2 *++SP(16), B3

ZERO . D1 A4

NOP 3

RET .S2 B3

Andrzej Wasowski ~ Episode 2: Compilation environment

Example assembled

o Assembler resolves symbolic addresses and
translates symbolic instructions to binary
values.

o External symbols remain unresolved.

e On the next slide statistics for the object file
hello.o assembled from hello.s (GNU C/x86).

Andrzej Wasowski | Episode 2: Compilation environment 2-17

Example compiled (1V)

The 67xx assembly is different from x86.

Compiler translates a portable code
to a platform specific one.

Some instructions are put in parallel
(STW||MVKH).

NOP (no operation) instructions are inserted.

Seemingly nonlinear execution (call place and
parameter passing).

Andrzej Wasowski |~ Episode 2: Compilation environment

Example assembled (II)

SYMBOL TABLE

00000000 | df *ABS+ 00000000 hell o.cpp
00000000 | d .text 00000000

00000000 | d .data 00000000

00000000 | d .bss 00000000

00000000 | d .rodata 00000000

00000000 | d .eh_frame 00000000
00000000 I d .note. GNU-stack 00000000
00000000 | d .conmment 00000000
00000000 g F .text 00000023 mamin
00000000 *=UND+ 00000000 printf

00000000 *UND+ 00000000 _ gxx_personality vO

Andrzej Wasowski | Episode 2: Compilation environment

Example assembled (llI)

e This object (.0) file needs to be linked with the C
library or another .o file that provides the
printf function.

e In modern compilers the assembling stage is
often incorporated in the compiler.

Andrzej Wasowski ~ Episode 2: Compilation environment

Architecture of a compiler (1l)

kwVOID id("main") LPAREN

stream of tokens 4 uinehy comma id(varge") ...

(words)

AScCII
character
stream

/\
(file) abstract syntax /’\A\\

tree (AST)

s

ng A
o annotated /\
bstract synt /N//N
tree (AST) /
flat list of 7123 — 12473
. instructions % L5‘
translation (triples, jup [r123]

quadraples)

optimizer

register allocation
assembler

f0 07 67 a4 5d cd ...

T123 <~ T12 T 73
jz L5
jmp [r123]

flat list of
instructions
(triples, quadraples) machine
instructions
without local

labels (.o file)

AX < BX+CX symbolic
jz L5 instructions with

jmp [AX] labels

Andrzej Wasowski | Episode 2: Compiler Architecture

Architecture of a compiler

o Compilers are divided into layers,
called stages or passes.

e A stage inputs some program representation,
processes it and outputs a another
representation.

e The first stage typically inputs text files. The last
stage typically outputs machine code, eg. an
image that can be stored in EEPROM or a
binary file that can be executed on a PC.

e The front stages perform analyses, while the
late stages perform syntheses.

Andrzej Wasowski | Episode 2: Compiler Architecture

Lexical analysis: Tokens

e A source program is represented as a
sequence of characters

o A lexical analyzer (a lexer) breaks the sequence
of characters into a sequence of corresponding
tokens (like “words”).

ID foo n1l4 | ast

NUM 73 0 00 515 082

REAL 66.1 .5 10. 1e67 5.5e-10
IF i f

NOTEQ !=
LPAR (
RPAR)

Andrzej Wasowski | Episode 2: Lexical Analysis

Lexical analysis: Tokens (continued)
The program

fl oat matchO(char xs)

{ /I~ find a zero */
if (!strncnp(s,"0.0", 3))
return O.;

}

is translated to:

FLOAT ID(mat chQ) LPAREN CHAR STAR ID(S)
RPAREN LBRACE IF LPAREN BANG ID(St r ncnp)
LPAREN ID(S) COMMA STRING(0. 0) cOMMA NUM(3)
RPAREN RPAREN RETURN REAL(0. 0) SEMI RBRACE
EOF

Andrzej Wasowski | Episode 2: Lexical Analysis

Lexical analysis: Lexer (continued)

e Lexer also removes comments (done by the
preprocessor in C)

o Lexer removes white space from the code

¢ What are the words we need? How do we
specify them?

Andrzej Wasowski | Episode 2: Lexical Analysis

Describing Tokens

An identifier is a sequence of letters and digits; the first
character must be a letter. The underscore _ counts as a letter.
Upper- and lowercase letters are different. If the input stream
has been parsed into tokens up to a given character, the next
token is taken to include the longest string of characters that
could possibly constitute a token. Blanks, tabs newlines, and
comments are ignored except as they serve to separate
tokens. Some white space is required to separate otherwise
adjacent identifiers, keywords and constants.

e How do we detect identifiers?
e We need a precise way to describe them first.
e Regular expresssions offer such a way.

Andrzej Wasowski | Episode 2: Lexical Analysis

Regular Expressions

a An ordinary character stands for itself

€ The empty string.

M||IN Alternation, chosing from M or N

M-N Concatenation, M followed by an N

M* Repetition zero or more times,
Kleene’s closure

M+ Repetition one or more times

M? Optional

[a—zA—Z] Character set
Any single character except newline

The longest prefix of current input that can match
any regular expression is taken as the next token.

Andrzej Wasowski | Episode 2: Lexical Analysis

Examples of Regular Expressions Lexer Generators

o Lexer generator: given regular expressions for
. _ _ v token types generate a lexer translating a
a-z|la-2z0-9]" asimple identifier stream of characters to a stream of tokens.

<(:IaD) | tgloltgt:tgr(; e by translating regular expressions to
b deterministic finite automata, similar to Mealy

i f an if keyword (IF)

[0-9]" a decimal number machines.
(NUm) e The translation algorithm is standard (Appel,
([0—9""."[0—9]")[[([0-9]"."[0~9]+) areal number section 2.3-2.4)
(REAL) « A popular free lexer generator targeting C is flex
"//" =z \n") ([[P An" [\))" wh|te_space and (see also lex in Appel, section 2.5).
one line comment o There exist such tools for any general purpose
How can we describe the C identifier token? programming language.
Straight-Line Programs A Sample Straight-Line Programs
a 1= 5+3;
a = 543 b_::t(grint (a, a+l), 10+a);
b := (print (a, at+l), 10+a); print(b)
print (b) Token representation returned by a lexer:
produces ID(a) ASSGN DEC(5) PLUS DEC(3) SEMI
8 9 ID(b) ASSGN LPAR PRINT LPAR ID(a)
18 COMMA ID(a) PLUS DEC(1) RPAR
COMMA DEC(10) PLUS ID(a) RPAR SEMI

Andrzej Wasowski | Episode 2: Syntactical Analysis

Andrzej Wasowski | Episode 2: Syntactical Analysis

e How do we decide whether this token stream
constitutes a legal program?

e How do we translate it to a tree?

Andrzej Wasowski |~ Episode 2: Syntactical Analysis

Syntactical Analysis: Parsing (1)

A context free grammar is a set of production
rules describing the language’s syntax.

A production:

symbol — symbol symbol ... symbol

where symbol is either a token, called a
terminal symbol now,

or a nonterminal symbol.

Andrzej Wasowski | Episode 2: Syntactical Analysis

Syntactical Analysis: Parsing

e A parser inputs the stream of tokens produced
by the lexer.

e The tokens are analyzed and translated into an
Abstract Syntax Tree

e This analysis is performed by finding a
deriviation of the program with respect to a
context free grammar of the source language.

Andrzej Wasowski |~ Episode 2: Syntactical Analysis

A Grammar for SL Programs

Stmnt — Stmnt SEMI Stmnt
Stmnt — ID ASSGN Expr
Stmnt — PRINT LPAR List RPAR

Expr — ID

Expr — DEC

Expr — Expr PLUS Expr

Expr — LPAR Stmnt COMMA Expr RPAR
List — Expr

List — List COMMA Expr

Terminals are capitalized. Nonterminals arex Stmnt,
Expr, List. Stmnt is the start symbol. See also
Grammar 3.1, p. 41 in Appel.

Andrzej Wasowski | Episode 2: Syntactical Analysis

It is convenient to use literals instead of tokens:
1 Stmnt — Stmnt ; Stmnt

> Stmnt — ID : = Expr

3 Stmnt — print (List)

4 Expr — ID

5 Expr — DEC

6 EXpr — Expr + Expr

7 Expr — (Stmnt, Expr)

g List — Expr

g List — List, Expr

A stream of tokens is a syntactically legal SL
program if it can be derived using these rules.

Andrzej Wasowski |~ Episode 2: Syntactical Analysis

Rightmost Derivation (example)

Stmnt —; Stmnt; Stmnt —; Stmnt; Stmnt; Stmnt

—3 Stmnt ; Stmnt; print (List)

—g Stmnt; Stmnt; print(Expr)

—4 Stmnt; Stmnt; print(b)

—, Stmnt; b: =Expr; print(b)

—7 Stmnt; b: =(Stmnt, Expr); print(b)

—g Stmnt; b: =(Stmnt, Expr+ Expr); print(b)

—4 Stmnt; b: =(Stmnt, Expr+ a); print(b)

—5 Stmnt; b: =(Stmnt, 10+a); print(b)

—3 Stmnt; b:=(print(List), 10+a); print(b)

—g Stmnt; b:=(print(List, Expr), 10+a); print(b)
—e Stmnt; b: =(print (List, Expr+Expr), 10+a); print(b)
—s5 Stmnt; b: =(print(List, Expr+1), 10+a); print(b)
—4 Stmnt; b: =(print(List, a+1), 10+a); print(b)

—g Stmnt; b: =(print(Expr,a+l), 10+a); print(b)
—4 Stmnt; b:=(print(a, a+l), 10+a); print(b)

—p a: =Expr; b:=(print(a, a+l),10+a); print(b)

—e a: =Expr+Expr; b:=(print(a, a+l), 10+a); print(b)
—5 a: =Expr+3; b: =(print(a, atl), 10+a); print(b)
—g a: =5+3; b:=(print(a,atl), 10+a); print(b)

Parse Trees

Statement

/N

Statement SEMI /ﬁmen\
ID ASSGN Statement SEMI Statement
Expi n/ ID ASSGN Expression PRINT LPAR List RPAR

LPAR

PRINT LPAR

Statement

List

ListCOMMA ~ Expression

Expression ‘ PLUS

1D

1D

DEC

COMMA Expression

RPAR | Expréssion [Expression

[Expression

RPAR

Expression

(a > a + 1)

A sanitized parse tree (also called abstract syntax

tree, or AST) is the first, and perhaps most

important form of the program representation in the

entire compilation process.

Andrzej Wasowski | Episode 2: Syntactical Analysis

Andrzej Wasowski |~ Episode 2: Syntactical Analysis

Parser Generators

e The process of parsing is a reverse of
constructing a derivation.

e A parser is usually implemented as a

push-down automaton (stack automaton).

There exists several construction algorithms.
See more in Appel, sections 3.2-3.3.

Modern parsers are rarely hand-written.

o Parser generators translate grammars into
programs that read tokens and build parse trees

e Popular parser generators are yacc, bison,
JavaCC, jjtree, ANTLR, ...

e Such tools exist for all popular languages.

Andrzej Wasowski | Episode 2: Syntactical Analysis

