
FP8-17: Software Programmable
Signal Processing Platform Analysis

Exercises for Episode 3

Andrzej Wąsowski

Monday, February 19, 2007

Exercise 3.1 Write a short C program exhibiting a type error. Run it using your compiler and
observe the error message.

Exercise 3.2 Write a C program containing an undeclared identifier. What mechanism in the
compiler detects this error?

Exercise 3.3 List the entries in symbol table (mapping from names to types) at all the points
of the following program:

int f(int x) {
int y = x + x;
if (y < 10) return f(y);
else return y-1;

}

Exercise 3.4 Find the lecture slide showing assigning of registers to parameters. Discuss the
examples with your group, comparing them to the general rules of the previous slide. Also
check this on some of your actual code (perhaps as a part of the next exercise).

Exercise 3.5 (big) Compile some C code of your project, producing the assembler files (op-
tion -k). Indicate the various elements of C67xx calling convention in the generated assembly
code. It is useful to use the -s (or -ss) option, to interline the C source with the assembly.
The -O0 may cause the generated code to be more readable (lowest optimization level).

Exercise 3.6 (a micro project) In continuation of the previous exercise consider examining
a function that is frequently called. Can performance be gained by avoiding some of the call
overhead? Consider inlining a function using the inline keyword, inline manually (per-
haps using a preprocessor macro), or inline and implement in assembly. Each time examine
the output assembly code and benchmark efficiency if possible. If you have any interesting
observations then do not forget to document them in the project report.

1



Exercise 3.7 (project hint) Read SPRU 187, p. 7–11 on near and far pointers, and the role of
the DP (data pointer) register in accessing global and static data. Compare the access times to
global data for near pointers (a single LDW instruction) and the time required for far pointers
(two moves and one LDW).

Analyze the assembly code for efficiency critical part of your project. Check which memory
model is used by the compiler, and check whether your data fits in the 32K bytes requirement.
If not try to move to the smaller memory model, to enforce more efficient data access. Another
idea would be to give up global data in favor of local data allocated in stack frames.

Exercise 3.8 For brave: explain to Andrzej what happens on the snippet of assembly code for
the Hello world program presented in episode 2.

2


