Software Programmable DSP
Platform Analysis
Episode 4, Monday, 26 February, 2007, Ingredients
Intermediate Representation
IR Expressions
IR Statements
Instruction Selection
Maximal Munch
Translating to Lists of Instructions

IR: Expressions

Const i	integer constant i
NAME n	address of a symbolic label n
TEMP t	temporary (think abstract register)
$\operatorname{BinOP}\left(o, e_{1}, e_{2}\right)$	evaluate e_{1}, e_{2}, return $e_{1} o e_{2}$ $o \in\{+,-$, XOR $, *, /, \&, \mid,>, \ll\}$
$\operatorname{MEm}(e, n)$	content of n cells at address e. Often drop n to avoid clutter
$\operatorname{CALL}(f, l)$	Call function at address f with arguments on list l $\operatorname{ESEQ}(s, e)$
	execute stmt s, evaluate expr e, return value of e.

NAME $n \quad$ address of a symbolic label n
TEMP $t \quad$ temporary (think abstract register)
$\operatorname{Binop}\left(o, e_{1}, e_{2}\right)$ evaluate e_{1}, e_{2}, return $e_{1} o e_{2}$ $o \in\{+,-$, XOR $, *, /, \&, \mid, \gg, \ll\}$
$\operatorname{MEM}(e, n) \quad$ content of n cells at address e. Often drop n to avoid clutter
$\operatorname{CALL}(f, l) \quad$ Call function at address f with arguments on list l return value of e.

Intermediate Representation

- After initial analyses, abstract syntax tree is translated to an intermediate representation.
- Single back-end is used for several languages,
- and single front-end for various targets (important for companies like TI)
- IR is a form of a tree-like language with limited instruction set.
- Later the back-end shall translate IR to the target instruction set.

Translating a Constant

Each integer constant i is translated to Const i. For example:

$$
\tau(1)=\text { CONST } 1
$$

Should we have more types of constants (for example floats), a distinct constructor for each of them should be included in the IR.

Translating Addition

$$
\tau\left(e_{1}+e_{2}\right)=\operatorname{BinOP}\left(+, \tau\left(e_{1}\right), \tau\left(e_{2}\right)\right)
$$

Variable Access

A stack allocated variable v at offset k :
$\operatorname{MEm}(\operatorname{Binop}(+, \operatorname{TEMP} f p, \operatorname{Const} k))$

Unary Minus

$$
\tau\left(-\mathrm{e}_{1}\right)=\operatorname{Const} 0-\tau\left(\mathrm{e}_{1}\right)
$$

- If v is allocated in register r_{i} then the translation is simply Temp r_{i}.
- Typically all variables that need explicit addresses would be allocated on the stack,
- and all the others in abstract registers (temporaries).
- Only at the later optimization steps abstract registers will be mapped to finite number of physical registers.

Translating Conditions (first attempt)

$$
\tau(a>b \| c<d)=\|(>(\tau(a), \tau(b)),<(\tau(c), \tau(d))))
$$

Does not preserve C semantics: no short circuit.
Needs control statements to achieve lazy evaluation.

Conditions Revisitted

- Use conditional jump (CJump) to shortcut computation of disjunction.
- Only compute the right side, if the left side fails.
- Compute the left side,
- and if it is true, jump over the computation of the right operand.
- If the left side gives fall, jump to the computation of the right operand.

IR: Statements

$\operatorname{Move}(\operatorname{TEMP} t, e)$	move value of e to register t
$\operatorname{Move}\left(\operatorname{MEM}\left(e_{1}, n\right), e_{2}\right)$	store value of e_{2} in n cells at e_{1} compute value of e, discard it
$\operatorname{ExP} e$	jump to program location returned by e
$\operatorname{JumP} e$	compare values of e_{1}, e_{2} using operator o, jump to label t or f depending on the result.
	$o \in\{=,!=,<,>, \leq, \geq\}$ $\operatorname{SEQ}\left(s_{1}, s_{2}\right)$
$\operatorname{LABEL} n$	execute s_{1} and then s_{2}
label n before next instruction	

Let $l_{\text {true }}$ be the label of the code to be executed if the condition is true, and $l_{\text {false }}$ otherwise. Then:
$\tau(a>b \| c<d) \quad=$
$\operatorname{SEQ}\left(\operatorname{CJUMP}\left(>, \tau(a), \tau(b), l_{\text {true }}, l_{\text {next }}\right)\right.$,
SEQ(LABEL $l_{\text {next }}$,
$\left.\left.\operatorname{CJUMP}\left(<, \tau(c), \tau(d), l_{\text {true }}, l_{\text {false }}\right)\right)\right)$
where $l_{\text {next }}$ is a fresh, local label.

$$
\tau(a>b \| c<d)
$$

The rightmost variant translated to IR.

Naturally expands to: but more popular is:

While Loops

A while loop: while (e) b;

```
test:if (!e) goto test;
```

test:if (!e) goto test;
test:if (!e) goto test;
test:if (!e) goto test;
goto done; beg: b;
goto done; beg: b;
b; test:if (e)
b; test:if (e)
goto test; goto beg;
goto test; goto beg;
done:...
1 CJump per iteration 1 CJump per iteration
+1 Jump per iteration +1 Jump to initialize

```

More patterns of translation in Appel, section 7.2.
- The IR language does not have the construct for function definition (but it has calls).
- IR is suitable for representing function bodies.
- In this way platform dependent calling conventions (entry and exit code) do not pollute our IR, which should be general.
- This code is added by the compiler later on.

\section*{Agenda}

Intermediate Representation
IR Expressions
IR Statements

Instruction Selection
Maximal Munch
Translating to Lists of Instructions

And LDH \(*++\) A4 [A1], A8 is even more complex

(source: spru189, pp. 3-68-3-71)

\section*{Instruction Selection}

A node in the IR tree represents a single operation. A target (VLIW) instruction represents many.
Example LDW on C67x: LDW *-A5 [A1], A7
Corresponds (roughly) to:


\section*{Target Instructions}
\begin{tabular}{|c|c|c|c|}
\hline name & semantics & c6xxx instr. & pattern \\
\hline ADD & \(r_{i} \leftarrow r_{j}+r_{k}\) & \(\operatorname{ADD} r_{j}, r_{k}, r_{i}\) &  \\
\hline MUL & \(r_{i} \leftarrow r_{j} * r_{k}\) & MPY \(r_{j}, r_{k}, r_{i}\) & \[
/ 1
\] \\
\hline ADDI & \(r_{i} \leftarrow r_{j}+c\) & ADD \(c, r_{j}, r_{i}\) &  \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l}
\hline name & semantics & \(c 6 x x x\) instr. \\
\hline \hline LOAD & \(r_{i} \leftarrow M\left[r_{j}+c\right]\) & LDW \(* r_{j}[c], r_{i}\) \\
& & \(C_{\text {Const }}^{\text {MEM }}\)
\end{tabular}

The last pattern matches for \(c=0\).



MOVEM does not seem to have a direct C6xxx counterpart, but we shall assume that we have it, for simplicity of the examples.
\begin{tabular}{c|l|l} 
name & semantics & c6xxx instr. \\
\hline \hline STORE & \(M\left[r_{j}+c\right] \leftarrow r_{i}\) & STW \(r_{i}, * r_{j}[c]\)
\end{tabular}


The last pattern matches for \(c=0\).
\(a\left[i^{*} 4\right]=x\)


\section*{Maximal Munch}

- Tile the tree with instruction patterns
- Always possible, but solutions is not unique.
- Maximal Munch finds the largest tile for the root
- and applies itself recursively to the subtrees.

\section*{Linearization of the Tree}
- Maximal Munch did the tiling top down.
- Translation to a sequence of instructions proceeds bottom up.
- First instantiate leaves, then parents.
- The outcome:
```

LDW *FP[a], r
MPY 4, i, r
ADD r}\mp@subsup{r}{1}{},\mp@subsup{r}{2}{},\mp@subsup{r}{3}{
ADDI }x,FP,\mp@subsup{r}{4}{
MOVEM *r }\mp@subsup{\mp@code{3}}{5}{~}\leftarrow*\mp@subsup{r}{4}{

```

\section*{Another Tiling of the Same Tree}

- Bigger by one instruction, but may be faster.
- Maximal Munch does not guarantee optimality.
- Optimal algorithm based on dynamic programming, Appel p. 197.```

