Software Programmable DSP Platform Analysis Episode 5, 5 April 2007, Ingredients

Liveness Analysis

Control-Flow Graphs **Definition & Use** Calculation of Liveness Interference Graphs

Register Allocation

Coloring by Simplification **Spilling**

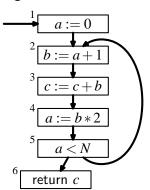
Cl6x Compiler Intrinsics **Function Inlining**

Andrzej Wąsowski Episode 5: Ingredients

Liveness Analysis

- Identify temporaries that cannot be active at the same time.
- This is achieved by liveness analysis.
- Liveness analysis works on control flow graphs.
- In practice the flow graph is created from the abstract machine program,
- but for clarity of presentation we shall use simple language of expressions and assignments in this lecture.

From Abstract To Concrete Registers

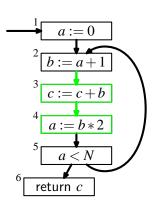

- Instruction selection has left us with an assembly program that uses abstract registers (unboundedly many).
- But target architecture only has a small fixed set of registers...
- We want to map numerous temporaries (TEMP) into as few concrete registers as possible.
- Obviously we can only assign the same register to two temporaries, if we do not need both of them at the same time.

Andrzej Wąsowski Episode 5: Liveness Analysis

Control-Flow Graphs

- Each statement is a node
- An edge from node x to y if statement x can be directly followed by y during execution.

$$a \leftarrow 0$$
 $L_1:b \leftarrow a+1$
 $c \leftarrow c+b$
 $a \leftarrow b*2$
if $a < N$ goto L_1
return c



Andrzej Wąsowski Episode 5: Liveness Analysis

ndrzej Wąsowski Episode 5: Liveness Analysis

Live Variable

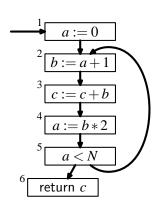
A variable is live at a given program point if its current value may be used in later execution.

- b is live in node 4
- so b is live on entry to 4
- 3 does not define b so b is live in 3 and on all edges incoming.
- 2 defines b and does not use it. b is not live in 2. Live range of b is $\{2 \rightarrow 3, 3 \rightarrow 4\}.$

Episode 5: Liveness Analysis

- a := 0b := a + 1c := c + ba := b * 2a < Nreturn c
- a is live in nodes 2,5.
- Take one step back.
- 4 and 1 kill a.
- Live range of a is $\{1 \to 2, 4 \to 5 \to 2\}.$
- Note: the value of a in node 3 is completely useless.

Andrzej Wąsowski Episode 5: Liveness Analysis

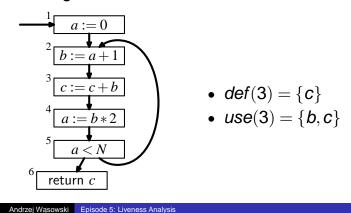

a := 0b := a + 1c := c + ba := b * 2a < Nreturn c

- c is used in 3,6
- One step back.
- Another one back.
- Note that c is live both on entry and exit from 3, as it is both defined and used in 3.
- c is live on entry to 1. If c is not a parameter, then this is a bug (uninitialized variable).

- *out-edges*[*n*]: all edges that lead to a successor node of *n*.
- in-edges[n]: all edges that lead from a predecessor node of n.
- pred[n]: set of all predecessors of n.
- succ[n]: set of all successors of n.

Andrzej Wąsowski Episode 5: Liveness Analysis

Episode 5: Liveness Analysis



out-edges[5] =
$$\{5 \rightarrow 6, 5 \rightarrow 2\}$$
 succ[5] = $\{2, 6\}$
in-edges[2] = $\{5 \rightarrow 2, 1 \rightarrow 2\}$ pred[2] = $\{1, 5\}$

Andrzej Wąsowski Episode 5: Liveness Analysis

Definition & Use

- An assignment to a variable *x* **defines** *x*.
- An occurrence of x on the right hand side of the assignment is called a **use** of *x*.

Liveness

Variable x is **live** on the given edge if there exists a directed path from that edge to a use that does not go through any def.

X is **live-in** in node *n* if it is live on any of its in-edges.

X is **live-out** in node *n* if it is live on any of its out-edges.

Calculation of Liveness

$$in[n] = use[n] \cup (out[n] - def[n])$$

 $out[n] = \bigcup_{s \in succ[n]} in[s].$

- initialize all *in*[*n*] and *out*[*n*] sets to be empty
- compute new sets interpreting equality like assignments
- repeat the previous step until no growth is observed in the sets.

Andrzej Wąsowski Episode 5: Liveness Analysis

Andrzej Wąsowski Episode 5: Liveness Analysis

The result for our running example is

node	live-in	live-out
1	С	ac
2	ca	bc
3	bc	bc
4	bc	ac
5	ac	ac
6	c	

Andrzej Wąsowski Episode 5: Liveness Analysis

Agenda

Liveness Analysis

Control-Flow Graphs **Definition & Use** Calculation of Liveness Interference Graphs

Register Allocation

Coloring by Simplification Spilling

Cl6x Compiler Intrinsics

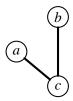
Function Inlining

Andrzej Wąsowski Episode 5: Liveness Analysis

Interference Graphs

- Variables a and b are in interference if a and b cannot be allocated in the same memory space (a register).
- Overlapping live ranges cause interference.
- Architecture constraints may cause interferences (for example registers participating in some instruction cannot be from two different register files).

The following are our live ranges:


node	live-in	live-out
1	С	ac
2	ca	bc
3	bc	bc
4	bc	ac
5	ac	ac
6	c	

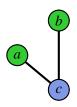
- We can see from this that a interferes with c
- and b interferes with c,
- but a does not interfere with b.

Andrzej Wąsowski Episode 5: Liveness Analysis

Andrzej Wąsowski Episode 5: Liveness Analysis

The same information presented as an interference graph:

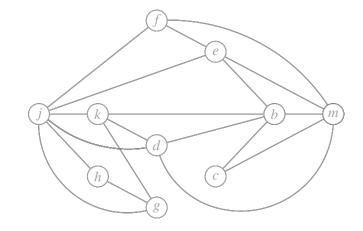
Andrzej Wąsowski Episode 5: Liveness Analysis


Coloring by Simplification [Kempe 1879]

This is a coloring algorithm based on heuristics (i.e. does not guarantee optimality):

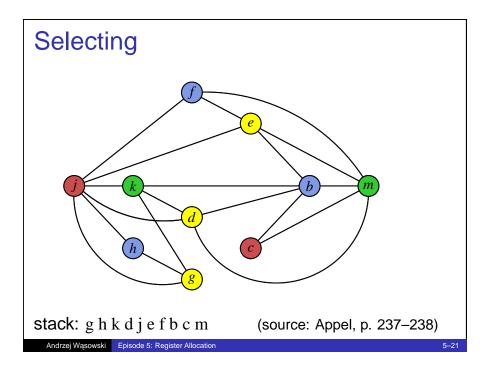
- Assume K registers (colors) are available.
- Find a node *m* with less than *K* neighbors.
- Remove *m* from the graph (it will be easy to add it and color, since it has less than *K* members).
- Repeat previous step until you end up with isolated nodes.
- · Assign them the first color,
- and add nodes back to the graph in the reverse order, adding colors on the fly.

Register Allocation


Assign as few platform registers to many temporaries: do this by assigning a minimal number of colors to nodes of interference graph, such that any neighboring vertices have different colors.

A and b have been allocated in the same register.

Andrzej Wąsowski Episode 5: Register Allocation


Simplifying

stack: g h k d j e f b c m

(source: Appel, p. 237-238)

Andrzej Wąsowski Episode 5: Register Allocation

- We ignore the spill during the main run and continue to find all other spills.
- Code is rewritten to fetch and store from memory for each definition and use.
- Then liveness analysis and colouring has to be rerun, as the interference graph has changed (the new code uses new temporaries).
- Usually this process succeeds after one or two iterations.

Spilling

- Colouring by simplification may fail if the interference graph is not *k*-colourable.
- If all nodes left in the graph have degrees higher than k, an arbitrary node n has to be removed from the graph (potential spill).
- But since the algorithm cannot be really sure if this is a real spill, we put the node on the stack hoping that we can still colour this with just k colours during selection.
- If selection manages to colour *n* then fine.
- If neighbours of *n* already use *k*: **actual spill**.
- *n* has to be stored in memory.

Andrzej Wąsowski Episode 5: Register Allocation

On Choosing Colors

- A local variable that is not live across the call should be allocated to the caller save registers (so only choose from a subsset of colours).
- Similarly a local variable that is live across several calls should be stored in a callee save register to avoid multiple saves.
- Register allocation for trees (side-effect free expressions) can be done much more efficiently, see Appel p. 257.

Andrzei Wasowski Episode 5: Register Allocation

Register Allocation of cl6x

- TI's cl6x performs a cost-based register allocation
- Variables used within loops are weighted to have priority over others.
- Variables with non-overlapping ranges might be allocated to the same register.

[spru 187, p. 3-36]

Andrzej Wąsowski Episode 5: Register Allocation

Compiler Intrinsics [cl6x specific!]

- Intrinsics are special functions that map directly to inlined C67x instructions.
- They look like a function call.
- Name starts with an underscore.
- Instrinsics are directly compiled to special instructions.
- Exhaustive list available in section 2.4.1 of spru 198 (Programmer's Guide).

Agenda

Liveness Analysis

Control-Flow Graphs **Definition & Use** Calculation of Liveness Interference Graphs

Register Allocation

Coloring by Simplification Spilling

Cl6x Compiler Intrinsics

Function Inlining

Andrzej Wąsowski Episode 5: Cl6x Compiler Intrinsics

Saturated Addition in Standard C

```
int sadd(int a, int b) {
  int r;
  r = a + b;
  if (((a^b) \& 0x80000000) == 0) {
    if ((r^a) & 0x80000000) {
      r = (a<0) ? 0x80000000:0x7fffffff;
 return r; }
```

Many, many cycles...

Andrzej Wąsowski Episode 5: Cl6x Compiler Intrinsics

Andrzej Wąsowski Episode 5: Cl6x Compiler Intrinsics

Saturated Addition Intrinsic

In Cl6x you can achieve the same effect with:

$$r = sadd(a,b);$$

- translated directly to SADD instruction [spru189,3-108]
- no stack frame, entry code, exit code
- efficient execution (1 cycle)
- disadvantage: portability suffers (but C implementations are provided for workstation testing, profiling and compilations with other compilers).

Andrzej Wąsowski Episode 5: Cl6x Compiler Intrinsics

Liveness Analysis

Agenda

Control-Flow Graphs **Definition & Use** Calculation of Liveness Interference Graphs

Register Allocation

Coloring by Simplification Spilling

Cl6x Compiler Intrinsics

Function Inlining

Andrzej Wąsowski Episode 5: Function Inlining

Inlining with cl6x

- Automatic inlining of small functions from optimization level -O3 and up
- Definition-control inlining (using the inline keyword), ignored if the optimizer is inactive.
- Intrinsics can also be understood as inlined functions implemented in assembly.

[source: spru 187 p. 2-38, 3-29]

 Appel describes the technology of inline expansion in section 15.4, but in the context of functional programming languages (which is somewhat too complex for our needs here).

Inlining pros and cons

- Saves overhead of function calls.
- Optimizer can optimize across the function call.
- Registers can be allocated better avoiding copying values to passing parameters, spilling, etc.
- Only useful for small functions or functions only called at one site (due to copying the function body).

Andrzej Wąsowski Episode 5: Function Inlining

Andrzej Wąsowski Episode 5: Function Inlining

	_	
Functions <u>not</u> inlined by cl6x		
Functions returning structures or unions.		
 Functions containing static variables. 		
 Taking a structure or union as a parameter. 		
Containing a volatile parameter/variable.		
 Taking a variable number of arguments. 		
 Declaring a local struct, union or enum type. 		
Recursive functions.		
Containing #pragma directives.		
With large stack frames (many local variables).		
[spru 187, p. 2-42]		
Andrzej Wąsowski Episode 5: Function Inlining 5–33		
	7	
I and the second		