Software Programmable DSP
Platform Analysis

Episode 5, 5 April 2007, Ingredients

Liveness Analysis
Control-Flow Graphs
Definition & Use
Calculation of Liveness
Interference Graphs

Register Allocation
Coloring by Simplification
Spilling
Clex Compiler Intrinsics
Function Inlining

Andrzej Wasowski | Episode 5: Ingredients 5-1

Liveness Analysis

e Identify temporaries that cannot be active at the
same time.

e This is achieved by liveness analysis.
e Liveness analysis works on control flow graphs.

e In practice the flow graph is created from the
abstract machine program,

e but for clarity of presentation we shall use
simple language of expressions and
assignments in this lecture.

Andrzej Wasowski | Episode 5: Liveness Analysis

From Abstract To Concrete Registers

e Instruction selection has left us with an
assembly program that uses abstract registers
(unboundedly many).

e But target architecture only has a small fixed
set of registers...

o We want to map numerous temporaries (TEMP)
into as few concrete registers as possible.

e Obviously we can only assign the same register
to two temporaries, if we do not need both of
them at the same time.

Andrzej Wasowski | Episode 5: Liveness Analysis

Control-Flow Graphs

e Each statement is a node

e An edge from node x to y if statement x can be
directly followed by y during execution.

a—>0
Liy:b—a+1

c—cCc+b

a<—bx2

ifa <N goto L,

return c

Andrzej Wasowski | Episode 5: Liveness Analysis

Live Variable

A variable is live at a given program point if its
current value may be used in later execution.

e bislive in node 4

e SO b is live on entry
to 4

e 3 does not define b so
b is live in 3 and on all
edges incoming.

e 2 defines b and does
not use it. b is not live
in 2. of bis
{2 —-3,3—4}.

Andrzej Wasowski | Episode 5: Liveness Analysis

a is live in nodes 2,5.
Take one step back.
4 and 1 kill a.

Live range of a is
{1-2,4—-5—2}.
Note: the value of a in
node 3 is completely
useless.

a<N

Andrzej Wasowski | Episode 5: Liveness Analysis

cisusedin 3,6
e One step back.

1
—s a:=0

) | Py o Another one back.
b:= a+1 \\\tii:a . .
T \ e Note that c is live both
ci=c+b on entry and exit from
-—JLb a2l 3, as itis both defined
2= P and used in 3.
a<N | / e Ccislive on entry to 1.
) If ¢ is not a parameter,
return C

then this is a bug
(uninitialized variable).

Andrzej Wasowski | Episode 5: Liveness Analysis

e out-edges[n]: all edges that lead to a successor
node of n.

e in-edges|n]: all edges that lead from a
predecessor node of n.

e pred[n]: set of all predecessors of n.
e succ[n]: set of all successors of n.

Andrzej Wasowski | Episode 5: Liveness Analysis

out-edges(5] = {5 — 6,5 — 2} succ[5] ={2,6}
in-edges[2] ={5— 2,1 — 2} pred[2] = {1,5}

Andrzej Wasowski | Episode 5: Liveness Analysis

Liveness

Variable x is live on the given edge if there exists a
directed path from that edge to a use that does not
go through any def.

X is live-in in node n ifitis live on any of its
in-edges.

X is live-out in node nifitis live on any of its
out-edges.

Andrzej Wasowski | Episode 5: Liveness Analysis

Definition & Use

e An assignment to a variable x defines x.

e An occurrence of x on the right hand side of the
assignment is called a use of x.

Andrzej Wasowski | Episode 5: Liveness Analysis 5-10

Calculation of Liveness

in[n] = use[n] U (out[n] — def[n])

lJ ins].

sesuccln]

out[n]

e initialize all in[n] and out[n] sets to be empty

e COmpute new sets interpreting equality like
assignments

e repeat the previous step until no growth is
observed in the sets.

Andrzej Wasowski | Episode 5: Liveness Analysis

The result for our running example is

node | live-in | live-out
Cc ac
ca bc
bc bc
ac
ac

bc
ac
C

OOk, WN P

Andrzej Wasowski | Episode 5: Liveness Analysis 5-13

Interference Graphs

e Variables a and b are in interference if a and b
cannot be allocated in the same memory space
(a register).

o Overlapping live ranges cause interference.

o Architecture constraints may cause
interferences (for example registers
participating in some instruction cannot be from
two different register files).

Andrzej Wasowski | Episode 5: Liveness Analysis 5-15

Agenda

Liveness Analysis
Control-Flow Graphs
Definition & Use
Calculation of Liveness
Interference Graphs

Register Allocation
Coloring by Simplification
Spilling

Cléx Compiler Intrinsics

Function Inlining

Andrzej Wasowski | Episode 5: Liveness Analysis

The following are our live ranges:

node | live-in | live-out

1 C ac
2 ca bc
3 bc bc
4 bc ac
5 ac ac
6 C

¢ We can see from this that a interferes with ¢
e and b interferes with c,
¢ but a does not interfere with b.

Andrzej Wasowski | Episode 5: Liveness Analysis

The same information presented as an
interference graph:

()
@

Andrzej Wasowski | Episode 5: Liveness Analysis

Coloring by Simplification

[Kempe 1879]

This is a coloring algorithm based on heuristics (i.e.
does not guarantee optimality):

o Assume K registers (colors) are available.
Find a node m with less than K neighbors.

Remove m from the graph (it will be easy to add
it and color, since it has less than K members).

Repeat previous step until you end up with
isolated nodes.

Assign them the first color,

and add nodes back to the graph in the reverse
order, adding colors on the fly.

Andrzej Wasowski | Episode 5: Register Allocation 5-19

Register Allocation

Assign as few platform registers to many
temporaries: do this by assigning a minimal number
of colors to nodes of interference graph, such that
any neighboring vertices have different colors.

A and b have been allocated in the same register.

Andrzej Wasowski |~ Episode 5: Register Allocation

Simplifying

stack: ghkdjefbcm

Andrzej Wasowski | Episode 5: Register Allocation

(source: Appel, p. 237-238)

5-20

Selecting

stack: ghkdjefbcm

Andrzej Wasowski | Episode 5: Register Allocation

(source: Appel, p. 237-238)

5-21

o We ignore the spill during the main run and
continue to find all other spills.

e Code is rewritten to fetch and store from
memory for each definition and use.

e Then liveness analysis and colouring has to be
rerun, as the interference graph has changed
(the new code uses new temporaries).

o Usually this process succeeds after one or two
iterations.

Andrzej Wasowski | Episode 5: Register Allocation

5-23

Spilling

e Colouring by simplification may fail if the
interference graph is not k-colourable.

e If all nodes left in the graph have degrees
higher than k, an arbitrary node n has to be
removed from the graph (potential spill).

e But since the algorithm cannot be really sure if

this is a real spill, we put the node on the stack

hoping that we can still colour this with just k

colours during selection.

If selection manages to colour n then fine.

If neighbours of n already use k: actual spill .

 n has to be stored in memory.

Andrzej Wasowski |~ Episode 5: Register Allocation

On Choosing Colors

e Alocal variable that is not live across the call
should be allocated to the caller save registers
(so only choose from a subsset of colours).

o Similarly a local variable that is live across
several calls should be stored in a callee save
register to avoid multiple saves.

o Register allocation for trees (side-effect free
expressions) can be done much more
efficiently, see Appel p. 257.

Andrzej Wasowski | Episode 5: Register Allocation

5-24

Register Allocation of cléx

e TI's cl6x performs a cost-based register
allocation

o Variables used within loops are weighted to
have priority over others.

o Variables with non-overlapping ranges might be
allocated to the same register.

[spru 187, p. 3-36]

Andrzej Wasowski | Episode 5: Register Allocation 5-25

Compiler Intrinsics [cl6x specific!]

e Intrinsics are special functions that map directly
to inlined C67x instructions.

e They look like a function call.
¢ Name starts with an underscore.

e Instrinsics are directly compiled to special
instructions.

o Exhaustive list available in section 2.4.1 of
spru 198 (Programmer’s Guide).

Andrzej Wasowski | Episode 5: Cl6x Compiler Intrinsics

Agenda

Liveness Analysis
Control-Flow Graphs
Definition & Use
Calculation of Liveness
Interference Graphs

Register Allocation
Coloring by Simplification
Spilling

Cléx Compiler Intrinsics

Function Inlining

Andrzej Wasowski ~ Episode 5: Cl6x Compiler Intrinsics 5-26

Saturated Addition in Standard C

int sadd(int a, int b) {
int r;
r=a + b;
if (((@"b) & 0x80000000) == 0) {
if (("a) & 0x80000000) {
r = (a<0) ? 0x80000000:0x7fffffff;
}
}
return r; }

Many, many cycles...

Andrzej Wasowski ~ Episode 5: Cl6x Compiler Intrinsics

Saturated Addition Intrinsic

In CI6x you can achieve the same effect with:
r = _sadd(a,b);
o translated directly to SADDinstruction
[sprul89,3-108]
e Nno stack frame, entry code, exit code
o efficient execution (1 cycle)

o disadvantage: portability suffers (but C
implementations are provided for workstation
testing, profiling and compilations with other
compilers).

Andrzej Wasowski | Episode 5: Cl6x Compiler Intrinsics

Inlining with cl6x

e Automatic inlining of small functions from
optimization level -O3 and up

e Definition-control inlining (using the inline
keyword), ignored if the optimizer is inactive.

¢ Intrinsics can also be understood as inlined
functions implemented in assembly.

[source: spru 187 p. 2-38, 3-29]

o Appel describes the technology of inline
expansion in section 15.4, but in the context of
functional programming languages (which is
somewhat too complex for our needs here).

Andrzej Wasowski | Episode 5: Function Inlining

Agenda

Liveness Analysis
Control-Flow Graphs
Definition & Use
Calculation of Liveness
Interference Graphs

Register Allocation
Coloring by Simplification
Spilling

Cléx Compiler Intrinsics

Function Inlining

Andrzej Wasowski | Episode 5: Function Inlining 5-30

Inlining pros and cons

e Saves overhead of function calls.
o Optimizer can optimize across the function call.

e Registers can be allocated better avoiding
copying values to passing parameters, spilling,
etc.

e Only useful for small functions or functions only
called at one site (due to copying the function
body).

Andrzej Wasowski ~ Episode 5: Function Inlining

Functions not inlined by cl6x

e Functions returning structures or unions.

e Functions containing static variables.

e Taking a structure or union as a parameter.

o Containing a volatile parameter/variable.

e Taking a variable number of arguments.

e Declaring a local struct, union or enum type.

e Recursive functions.

o Containing #pragma directives.

o With large stack frames (many local variables).

[spru 187, p. 2-42]

Andrzej Wasowski | Episode 5: Function Inlining

